ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Paritosh Chaudhuri, P. Santra, S. K. S. Parashar, D. Chenna Reddy
Fusion Science and Technology | Volume 63 | Number 1 | January 2013 | Pages 59-65
Technical Note | doi.org/10.13182/FST12-489
Articles are hosted by Taylor and Francis Online.
Plasma-facing components (PFCs) are an important part of the Indian Steady State Superconducting Tokamak (SST-1) design. The main consideration in the design of PFCs is steady-state heat removal of up to 1 MW/m2 , which is nearly the limit for incident heat flux of mechanically attached graphite tiles for tokamak PFCs. SST-1 PFCs consist of divertors, passive stabilizers, baffles, and limiters and are designed for long-pulse operation, which requires active cooling of these components. During steady-state operation, the average heat loads on the divertor and passive stabilizers are expected to be 0.6 and 0.25 MW/m2 , respectively. Design considerations include two-dimensional steady-state and transient tile temperature distribution and the resulting thermal loads in PFCs during plasma operation. Thermal analysis is carried out to evaluate the thermomechanical behavior of the SST-1 PFCs. In this technical note, temperature distribution and thermally induced stresses and strains in PFCs are analyzed using a finite element method, and the effect of stress and strain on different materials used in PFCs is discussed.