ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
S. Park, Y. S. Bae, J. H. Kim, H. Do, H. T. Kim, K. M. Kim, H. K. Kim, H. J. Kim, W. S. Han, H. L. Yang, J. G. Kwak, W. Namkung, M. H. Cho, H. Park, L. Delpech, J. Hillairet, R. Magne, G. T. Hoang, X. Litaudon, G. Wallace, S. Shiraiwa, R. Vieira, J. Doody, R. Parker
Fusion Science and Technology | Volume 63 | Number 1 | January 2013 | Pages 49-58
Technical Paper | doi.org/10.13182/FST12-493
Articles are hosted by Taylor and Francis Online.
A 5-GHz steady-state lower hybrid (LH) current drive (LHCD) system is planned to support steady-state and advanced tokamak operation on the Korea Superconducting Tokamak Advanced Research (KSTAR) experiment. As an initial phase, a pulsed 5-GHz, 500-kW LHCD system has been installed in KSTAR for basic experimental studies of the LH coupling and flux saving in the plasma current ramp-up, prior to long-pulse noninductive operation in KSTAR. A Toshiba-made klystron developed in collaboration with Pohang University of Science and Technology in 2006 is utilized for the initial KSTAR LHCD system. The LH launcher is designed as a fully active waveguide grill type with a parallel refractive index n[parallel] value ranging from 1.8 to 4.3 and with high directivity. In the initial stage, the LH launcher consists of eight columns of four-way power splitters and two columns of dummy waveguides, one on each side. The operational n[parallel] value is fixed at 2.1 but can be adjusted by replacing waveguide components external to the vacuum vessel. Since the target operation pulse duration of the initial LHCD system is 2 s with an output power of 500 kW at the klystron window, the prototype klystron was recently successfully conditioned to a radio frequency power of 514 kW for a maximum pulse duration of 3 s using a matched dummy load (voltage standing wave ratio of 1.16:1). This paper presents the progress of the initial KSTAR LHCD system and the performance test results of the prototype klystron. The research plan aiming at steady-state LHCD operation in KSTAR is also described in this paper.