ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
S. Park, Y. S. Bae, J. H. Kim, H. Do, H. T. Kim, K. M. Kim, H. K. Kim, H. J. Kim, W. S. Han, H. L. Yang, J. G. Kwak, W. Namkung, M. H. Cho, H. Park, L. Delpech, J. Hillairet, R. Magne, G. T. Hoang, X. Litaudon, G. Wallace, S. Shiraiwa, R. Vieira, J. Doody, R. Parker
Fusion Science and Technology | Volume 63 | Number 1 | January 2013 | Pages 49-58
Technical Paper | doi.org/10.13182/FST12-493
Articles are hosted by Taylor and Francis Online.
A 5-GHz steady-state lower hybrid (LH) current drive (LHCD) system is planned to support steady-state and advanced tokamak operation on the Korea Superconducting Tokamak Advanced Research (KSTAR) experiment. As an initial phase, a pulsed 5-GHz, 500-kW LHCD system has been installed in KSTAR for basic experimental studies of the LH coupling and flux saving in the plasma current ramp-up, prior to long-pulse noninductive operation in KSTAR. A Toshiba-made klystron developed in collaboration with Pohang University of Science and Technology in 2006 is utilized for the initial KSTAR LHCD system. The LH launcher is designed as a fully active waveguide grill type with a parallel refractive index n[parallel] value ranging from 1.8 to 4.3 and with high directivity. In the initial stage, the LH launcher consists of eight columns of four-way power splitters and two columns of dummy waveguides, one on each side. The operational n[parallel] value is fixed at 2.1 but can be adjusted by replacing waveguide components external to the vacuum vessel. Since the target operation pulse duration of the initial LHCD system is 2 s with an output power of 500 kW at the klystron window, the prototype klystron was recently successfully conditioned to a radio frequency power of 514 kW for a maximum pulse duration of 3 s using a matched dummy load (voltage standing wave ratio of 1.16:1). This paper presents the progress of the initial KSTAR LHCD system and the performance test results of the prototype klystron. The research plan aiming at steady-state LHCD operation in KSTAR is also described in this paper.