ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
S. Park, Y. S. Bae, J. H. Kim, H. Do, H. T. Kim, K. M. Kim, H. K. Kim, H. J. Kim, W. S. Han, H. L. Yang, J. G. Kwak, W. Namkung, M. H. Cho, H. Park, L. Delpech, J. Hillairet, R. Magne, G. T. Hoang, X. Litaudon, G. Wallace, S. Shiraiwa, R. Vieira, J. Doody, R. Parker
Fusion Science and Technology | Volume 63 | Number 1 | January 2013 | Pages 49-58
Technical Paper | doi.org/10.13182/FST12-493
Articles are hosted by Taylor and Francis Online.
A 5-GHz steady-state lower hybrid (LH) current drive (LHCD) system is planned to support steady-state and advanced tokamak operation on the Korea Superconducting Tokamak Advanced Research (KSTAR) experiment. As an initial phase, a pulsed 5-GHz, 500-kW LHCD system has been installed in KSTAR for basic experimental studies of the LH coupling and flux saving in the plasma current ramp-up, prior to long-pulse noninductive operation in KSTAR. A Toshiba-made klystron developed in collaboration with Pohang University of Science and Technology in 2006 is utilized for the initial KSTAR LHCD system. The LH launcher is designed as a fully active waveguide grill type with a parallel refractive index n[parallel] value ranging from 1.8 to 4.3 and with high directivity. In the initial stage, the LH launcher consists of eight columns of four-way power splitters and two columns of dummy waveguides, one on each side. The operational n[parallel] value is fixed at 2.1 but can be adjusted by replacing waveguide components external to the vacuum vessel. Since the target operation pulse duration of the initial LHCD system is 2 s with an output power of 500 kW at the klystron window, the prototype klystron was recently successfully conditioned to a radio frequency power of 514 kW for a maximum pulse duration of 3 s using a matched dummy load (voltage standing wave ratio of 1.16:1). This paper presents the progress of the initial KSTAR LHCD system and the performance test results of the prototype klystron. The research plan aiming at steady-state LHCD operation in KSTAR is also described in this paper.