ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
J. M. Lopez, J. Vega, S. Dormido-Canto, A. Murari, J. M. Ramirez, M. Ruiz, G. De Arcas, JET-EFDA Contributors
Fusion Science and Technology | Volume 63 | Number 1 | January 2013 | Pages 26-33
Selected Paper from Seventh Fusion Data Validation Workshop 2012 (Part 3) | doi.org/10.13182/FST12-490
Articles are hosted by Taylor and Francis Online.
Disruptions in tokamak devices are inevitable and can severely damage a tokamak device's wall. For this reason, different protection mechanisms have to be implemented. In the Joint European Torus (JET), these protection systems are structured in different levels. At the lowest level are those systems that are responsible for protecting the machine's integrity, which must be highly reliable. More complex systems are located at higher levels; these higher-level systems have been designed to take action before low-level systems. Since the installation of the new metallic wall in JET, new protection systems have been being developed to improve the overall protection of the device. This work focuses on a software application - a disruption predictor - that detects an incoming disruption. This software application simulates the behavior of a real-time implementation.In recent years, efforts have been devoted to developing and optimizing a reliable system that is capable of predicting disruptions. This has been accomplished by the novel combination of machine-learning techniques based on supervised learning methods. Disruptions must be predicted early enough so that the protection systems can mitigate the effects of disruptions. This paper summarizes the software development of the JET disruption predictor. This software simulates the real-time data acquisition and data processing. It has been an essential software tool to both optimize the disruption prediction model and implement a simulator of the real-time predictor.