ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
J. M. Lopez, J. Vega, S. Dormido-Canto, A. Murari, J. M. Ramirez, M. Ruiz, G. De Arcas, JET-EFDA Contributors
Fusion Science and Technology | Volume 63 | Number 1 | January 2013 | Pages 26-33
Selected Paper from Seventh Fusion Data Validation Workshop 2012 (Part 3) | doi.org/10.13182/FST12-490
Articles are hosted by Taylor and Francis Online.
Disruptions in tokamak devices are inevitable and can severely damage a tokamak device's wall. For this reason, different protection mechanisms have to be implemented. In the Joint European Torus (JET), these protection systems are structured in different levels. At the lowest level are those systems that are responsible for protecting the machine's integrity, which must be highly reliable. More complex systems are located at higher levels; these higher-level systems have been designed to take action before low-level systems. Since the installation of the new metallic wall in JET, new protection systems have been being developed to improve the overall protection of the device. This work focuses on a software application - a disruption predictor - that detects an incoming disruption. This software application simulates the behavior of a real-time implementation.In recent years, efforts have been devoted to developing and optimizing a reliable system that is capable of predicting disruptions. This has been accomplished by the novel combination of machine-learning techniques based on supervised learning methods. Disruptions must be predicted early enough so that the protection systems can mitigate the effects of disruptions. This paper summarizes the software development of the JET disruption predictor. This software simulates the real-time data acquisition and data processing. It has been an essential software tool to both optimize the disruption prediction model and implement a simulator of the real-time predictor.