ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
D. Vezinet, D. Mazon, D. Clayton, R. Guirlet, M. O'Mullane, D. Villegas
Fusion Science and Technology | Volume 63 | Number 1 | January 2013 | Pages 9-19
Selected Paper from Seventh Fusion Data Validation Workshop 2012 (Part 3) | doi.org/10.13182/FST12-475
Articles are hosted by Taylor and Francis Online.
To obtain a fast estimation of the total impurity density distribution in a poloidal cross section from soft X-ray (SXR) measurements during quasi-stationary phases, the possibility that ionization equilibrium may have little influence on the emissivity profile of Ni and Fe in the core region of tokamak plasmas is investigated. Preliminary and encouraging results that support this assumption under certain conditions are found. A simplified approach aimed at computing a satisfactory estimation of the total density of a unique and identified impurity directly from an absolutely calibrated SXR tomographic inversion is implemented. An example of application to a previously and independently performed transport simulation of a Ni injection in Tore Supra is then given.