ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
D. Vezinet, D. Mazon, D. Clayton, R. Guirlet, M. O'Mullane, D. Villegas
Fusion Science and Technology | Volume 63 | Number 1 | January 2013 | Pages 9-19
Selected Paper from Seventh Fusion Data Validation Workshop 2012 (Part 3) | doi.org/10.13182/FST12-475
Articles are hosted by Taylor and Francis Online.
To obtain a fast estimation of the total impurity density distribution in a poloidal cross section from soft X-ray (SXR) measurements during quasi-stationary phases, the possibility that ionization equilibrium may have little influence on the emissivity profile of Ni and Fe in the core region of tokamak plasmas is investigated. Preliminary and encouraging results that support this assumption under certain conditions are found. A simplified approach aimed at computing a satisfactory estimation of the total density of a unique and identified impurity directly from an absolutely calibrated SXR tomographic inversion is implemented. An example of application to a previously and independently performed transport simulation of a Ni injection in Tore Supra is then given.