ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Kazuhiro Kobayashi, Hidenori Miura, Takumi Hayashi, Shuichi Hoshi, Toshihiko Yamanishi
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 711-715
Technical Paper | The Technology of Fusion Energy - Tritium, Safety, and Environment | doi.org/10.13182/FST07-A1574
Articles are hosted by Taylor and Francis Online.
To obtain performance data of atmosphere detritiation system at the off normal events such as SF6 release for the safety of ITER, the detritiation experiment was planned and performed at Tritium Process Laboratory (TPL) in Japan Atomic Energy Agency (JAEA) using a small scaled detritiation system for the oxidation performance test which can process gas flow rate of 0.06 m3/hr in once through. The detritiation system consists of two oxidation catalyst beds (473K and 773K) for converting hydrogen isotopes and tritiated methane in compounds to water vapor and a bubbler for removing water vapor. SF6 gas is used as an electric insulation gas of Neutral Beam Injection system (NBI) in ITER, and is expected to be released in an accident such as fire. In this time, the performance of oxidation catalyst bed of the detritiation system for hydrogen under existence of SF6 which are released from NBI was investigated.The SF6 gas was notably decomposed in the case of the catalyst bed temperature higher than 623K. In addition, when 0.05% or more of SF6 was introduced with 1% of hydrogen, a part of the water produced by the 473K catalyst bed was reduced to hydrogen due to the reaction with the decomposed gas in SF6. Consequently, the detritiation factor (D.F.) of the detritiation system was decreased to less than 50 from > 10000 of its initial value. Since the effect of SF6 depends on its concentration closely, the amount of SF6 released into the tritium handling area in an accident should be reduced by some ideas of the arrangement of components using SF6 in the buildings.