ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
T. Hayashi, H. Nakamura, K. Isobe, K. Kobayashi, T. Yamanishi, K. Okuno
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 687-691
Technical Paper | The Technology of Fusion Energy - Tritium, Safety, and Environment | doi.org/10.13182/FST07-A1569
Articles are hosted by Taylor and Francis Online.
In order to accumulate data on tritium transferred to cooling water of a fusion reactor, a series of experiments of tritium permeation into water jacket pressurized to 0.8MPa by He gas was performed through pure iron piping, which contained about 1 kPa of pure tritium gas at 423 K. Chemical forms of tritium permeated into water were monitored periodically under continuous purging water jacket by He. Observation of metal surface was also carried out periodically by SEM and XRD analysis.The actual tritium permeation rate was about 1/5 level of the calculated value. Even if surface oxide layer (magnetite, porous & fine layers) grew in the water boundary, tritium permeation rate to water was not changed drastically. On the other hand, hydrogen gas (HT) fraction of tritium permeated in water jacket decreased drastically with oxide layer growth. Furthermore, permeated species and amounts were not affected clearly by the dissolved hydrogen in water by purging 1% H2 in He.