ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
T. Muroga, T. Tanaka, Zaixin Li, A. Sagara, Dai-Kai Sze
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 682-686
Technical Paper | The Technology of Fusion Energy - Tritium, Safety, and Environment | doi.org/10.13182/FST07-A1568
Articles are hosted by Taylor and Francis Online.
One of the critical issues of Flibe/V-alloy blanket with REDOX control by Be is a large tritium inventory in V-alloy structures. Among the possible solutions to this issue would be to control REDOX not by Be but by addition of MoF6 or WF6 enhancing the reaction from T2 to TF. The present study investigated feasibility of this procedure by thermodynamic and neutronics calculations. Using the blanket dimensions of Force Free Helical Reactor (FFHR), tritium inventory in V-alloy structure and Flibe were estimated based on the calculated equilibrium partial pressures of T2 and TF in various cases of REDOX control by MoF6 or WF6. Also carried out were neutronics examinations for the impact of Mo or W doping in the blanket. The results showed that the tritium inventory in the blanket area would be less than 100g at the TF level of 0.1 and 1 ppm in Flibe with addition of WF6 and MoF6, respectively. WF6 doping is far more advantageous than MoF6 doping for low activation purposes.