ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Ioana R. Cristescu, I. Cristescu, Ch. Day, M. Glugla, D. Murdoch
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 659-666
Technical Paper | The Technology of Fusion Energy - Tritium, Safety, and Environment | doi.org/10.13182/FST07-A1564
Articles are hosted by Taylor and Francis Online.
During plasma operation of ITER in the DT phase, tritium will be distributed in the different subsystems of the fuel cycle; tritium inventories within the systems are not constant, but vary as the gas moves through these systems during the burn and dwell periods. To evaluate the tritium content in each sub-system of the fuel cycle of ITER, a dynamic model for tritium inventory calculation was developed. The code reflects the design of each system in various degrees of detail; both the physical processes characteristics and in some cases the associated control systems are modeled. The amount of tritium needed for ITER operation has a direct impact on the tritium inventories within the fuel cycle subsystems. As ITER will function in pulses, the main characteristics that influence both the maximum value of tritium inventories in the systems and the rapid tritium recovery from the fuel cycle as necessary for refueling are discussed. Eventually the inventories in the Isotope Separation System (as the system with the highest tritium inventory) for short and long pulses and their dependence on the packing molar inventory are presented.