ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
T. Okamura, K. Katayama, K. Imaoka, Y. Uchida, M. Nishikawa, S. Fukada
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 645-648
Technical Paper | First Wall, Blanket, and Shield | doi.org/10.13182/FST07-A1562
Articles are hosted by Taylor and Francis Online.
The erosion of carbon deposition layers by oxygen exposure and the desorpstion of hydrogen retained in the layers were investigated experimentally. Carbon deposition layers were formed by a sputtering method using hydrogen RF plasma. The layers were exposed to an argon gas with oxygen of 1013 Pa in the temperature range of 200-400°C. The erosion reaction progressed quickly within 10 minutes and then decelerated rapidly. The measurement of the outlet concentration revealed that most of the layer was eroded not as carbon monoxide and carbon dioxide but as soot. Additionally, it was estimated that the soot was released from the carbon deposition layer with a large amount of hydrogen.