ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
A. R. Raffray, A. E. Robson, M. E. Sawan, G. Sviatoslavsky, I. N. Sviatoslavsky, X. Wang
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 603-608
Technical Paper | First Wall, Blanket, and Shield | doi.org/10.13182/FST07-A1554
Articles are hosted by Taylor and Francis Online.
A possible way to address the issue of dry wall survival in a Laser IFE chamber is to use magnetic diversion in order to steer away the ions from the chamber wall (representing ~25-30% of the yield energy). A cusp magnetic field is imposed on to the chamber; the ions from the micro-explosion are trapped within the magnetic field and are directed to more readily accessible and replaceable dump regions at the equator and poles. A large fraction of the magnetic energy can be dissipated in the chamber walls if an electrically resistive structural material is used. An advanced blanket based on a self-cooled liquid breeder (e.g.Pb-17Li or flibe) and SiCf/SiC structure has been proposed for this purpose and a scoping design study performed as part of the High Average Power Laser program effort.This paper summarizes the results of this scoping study, and highlights the advantages of such a concept as well as the key issues that need to be addressed by R&D.