ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
L. Bühler
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 595-602
Technical Paper | First Wall, Blanket, and Shield | doi.org/10.13182/FST07-A1553
Articles are hosted by Taylor and Francis Online.
In a systematic parametric study 3D MHD flows in expansions of rectangular ducts with different expansion ratios, expansion lengths, and various wall conductivities are analyzed for fusion relevant parameters in order to establish a data base useful for the design of liquid metal blankets for fusion reactors. In currently considered helium-cooled liquid metal blankets the liquid metal velocities are very small so that inertia is often negligible in comparison with the electromagnetic forces. In the core of the flow the major balance of forces establishes between pressure and Lorentz forces while viscous forces are confined to very thin boundary layers along the duct walls. Near the expansion an intense exchange of flow between the upstream and downstream cores with the corresponding side layers is observed. At the expansion a large fraction of the flow is carried by these thin layers along the side walls. This effect becomes more pronounced with decreasing the length of the expansion region. The three-dimensional flow near the expansion gives rise to additional electric currents, which are responsible for higher pressure drop compared with fully developed conditions. This additional pressure drop and the flow partitioning between cores and side layers are investigated in detail depending on the relevant governing parameters.