ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
L. Bühler
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 595-602
Technical Paper | First Wall, Blanket, and Shield | doi.org/10.13182/FST07-A1553
Articles are hosted by Taylor and Francis Online.
In a systematic parametric study 3D MHD flows in expansions of rectangular ducts with different expansion ratios, expansion lengths, and various wall conductivities are analyzed for fusion relevant parameters in order to establish a data base useful for the design of liquid metal blankets for fusion reactors. In currently considered helium-cooled liquid metal blankets the liquid metal velocities are very small so that inertia is often negligible in comparison with the electromagnetic forces. In the core of the flow the major balance of forces establishes between pressure and Lorentz forces while viscous forces are confined to very thin boundary layers along the duct walls. Near the expansion an intense exchange of flow between the upstream and downstream cores with the corresponding side layers is observed. At the expansion a large fraction of the flow is carried by these thin layers along the side walls. This effect becomes more pronounced with decreasing the length of the expansion region. The three-dimensional flow near the expansion gives rise to additional electric currents, which are responsible for higher pressure drop compared with fully developed conditions. This additional pressure drop and the flow partitioning between cores and side layers are investigated in detail depending on the relevant governing parameters.