ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Michael Andersen, Nasr M. Ghoniem
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 579-583
Technical Paper | The Technology of Fusion Energy - High Heat Flux Components | doi.org/10.13182/FST07-A1551
Articles are hosted by Taylor and Francis Online.
Tungsten is a candidate material for a variety of applications in Magnetic and Inertial Fusion Energy systems. Experimental data show that the surface of tungsten exposed to laser, ion, and X-ray irradiation undergoes substantial roughening. Control of surface conditions is essential to the design of these systems, since it can lead to crack formation, adverse effects on heat absorption because of emissivity changes, and eventual failure.We first review recent experimental data on the effects of laser, ion and X-ray energetic pulses on the evolution of a surface to identify the variety of patterns and length scales and their dependence on the type and magnitude of irradiation pulses. Then we present a model for the evolution of surface roughness as a result of the balance between destabilizing elastic strain energy caused by thermomechanical strains and near surface accumulation of defects on the one hand, and stabilizing surface and near surface atomic diffusion on the other. Results of the model determine the conditions for surface roughness evolution and the effects of radiation fluence and pulse intensity on surface morphology.