ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Qiyang Hu, Shahram Sharafat, Nasr M. Ghoniem
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 574-578
Technical Paper | The Technology of Fusion Energy - High Heat Flux Components | doi.org/10.13182/FST07-A1550
Articles are hosted by Taylor and Francis Online.
During Helium implantation or generation in finite geometries, space dependent parameters and features affect Helium transport through the material. Conventional kinetic rate-theory models assume strictly homogeneous field parameters and as such can not directly resolve space dependent phenomena of helium transport. The current work outlines a new approach to simulate space-dependent helium transport during irradiation in finite geometries. The model and the numerical code, called HEROS, are described and applied to simulate typical IFE relevant helium implantation conditions. A case study using the HAPL IFE reactor design is used to demonstrate the capabilities of the HEROS code. It is shown that the HEROS code is capable of simulating very complex transient and space dependent Helium transport in finite geometries, including the simultaneous transient production of defects and space- and time-dependent temperature and temperature gradients. Space dependent nucleation and growth of helium bubbles during implantation are modeled along with the impact of biased migration and coalescence of Helium bubbles.