ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
M. Kobayashi, N. Ohyabu, T. Mutoh, R. Kumazawa, Y. Feng, M. Shoji, T. Morisaki, S. Masuzaki, A. Sagara, R. Sakamoto, T. Seki, J. Miyazawa, T. Watanabe, M. Goto, K. Ideda, H. Kasahara, S. Morita, B. J. Peterson, N. Ashikawa, K. Saito, S. Sakakibara, T. Tokuzawa, Y. Nakamura, K. Narihara, I. Yamada, H. Yamada, A. Komori, O. Motojima, LHD Experimental Group
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 566-573
Technical Paper | The Technology of Fusion Energy - High Heat Flux Components | doi.org/10.13182/FST07-A1549
Articles are hosted by Taylor and Francis Online.
The divertor performance of LHD is studied for the two configurations, LID and HD. It is shown that the both divertor configurations play important roles for obtaining high performance plasmas in LHD: the large pumping capability of the LID to keep the low edge density in the IDB-SDC plasma, the large wetted area and the flexibility of strike point sweep of HD to reduce the power load on the divertor plates in long pulse operations. The possible effect of the ergodic layer on impurity retention in divertor is discussed by using the 3D edge transport modelling. It is found that the drag force exerted by the plasma flow can dominate over the thermal force, providing the impurity retention effect. The further changes needed to improve the current divertor configurations are discussed. New divertor designs for the future upgrade of LHD and for a LHD-type reactor are presented.