ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
M. Kobayashi, N. Ohyabu, T. Mutoh, R. Kumazawa, Y. Feng, M. Shoji, T. Morisaki, S. Masuzaki, A. Sagara, R. Sakamoto, T. Seki, J. Miyazawa, T. Watanabe, M. Goto, K. Ideda, H. Kasahara, S. Morita, B. J. Peterson, N. Ashikawa, K. Saito, S. Sakakibara, T. Tokuzawa, Y. Nakamura, K. Narihara, I. Yamada, H. Yamada, A. Komori, O. Motojima, LHD Experimental Group
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 566-573
Technical Paper | The Technology of Fusion Energy - High Heat Flux Components | doi.org/10.13182/FST07-A1549
Articles are hosted by Taylor and Francis Online.
The divertor performance of LHD is studied for the two configurations, LID and HD. It is shown that the both divertor configurations play important roles for obtaining high performance plasmas in LHD: the large pumping capability of the LID to keep the low edge density in the IDB-SDC plasma, the large wetted area and the flexibility of strike point sweep of HD to reduce the power load on the divertor plates in long pulse operations. The possible effect of the ergodic layer on impurity retention in divertor is discussed by using the 3D edge transport modelling. It is found that the drag force exerted by the plasma flow can dominate over the thermal force, providing the impurity retention effect. The further changes needed to improve the current divertor configurations are discussed. New divertor designs for the future upgrade of LHD and for a LHD-type reactor are presented.