ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
S. Sharafat, A. Mills, D. Youchison, R. Nygren, B. Williams, N. Ghoniem
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 559-565
Technical Paper | The Technology of Fusion Energy - High Heat Flux Components | doi.org/10.13182/FST07-15
Articles are hosted by Taylor and Francis Online.
A new class of helium-cooled high heat-flux plasma facing heat exchanger (HX) concept is presented. These unique "Foam-In-Tube" HX concepts are composed of a thin tungsten shell integrally bonded to an open-cell tungsten foam core. High heat flux tests show maximum heat loads of 22.4 MW/m2 using 4 MPa helium at a flow rate of 27 g/s. Based on these impressive performance results, a unique and scalable heat exchanger channel with ultra-low pressure drop through the porous foam is presented. The primary advantage of the new concept is that pressure drop through the porous media and structure temperatures are nearly independent of HX tube length. The concept is modular in design and can be combined to meet divertor size requirements. From a manufacturing and reliability point of view, the advantage of the proposed concept is that it minimizes the need for joining to other functional materials.