ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Y. Oya, Y. Hirohata, T. Nakahata, T. Suda, M. Yoshida, T. Arai, K. Masaki, K. Okuno, T. Tanabe
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 554-558
Technical Paper | The Technology of Fusion Energy - High Heat Flux Components | doi.org/10.13182/FST07-A1547
Articles are hosted by Taylor and Francis Online.
To investigate retention characteristics of hydrogen isotopes in the first wall tiles made of isotropic graphite of JT-60U, surface morphology, erosion/deposition profiles and hydrogen isotope retentions were examined by SEM, XPS, TDS and SIMS. It was found that poloidal deuterium retention profile was rather uniform, while the thermal desorption behavior of deuterium was quite different depending on the locations of the tiles. Deuterium retained in the upper first wall, which was covered by thick boron layers with high concentration of B, was desorbed at lower temperature than that in the lower area covered by carbon layers with much less B content. Hydrogen retained during the boronization has significant contribution on the total hydrogen retention. D/H ratio in the first wall tiles was appreciably higher than that observed in the divertor tiles. Probably, the lower temperature of the first wall compared to that of the divertor tiles would prohibit desorption of the implanted deuterium and/or its replacement by subsequent D or H impingement. The injection of high energy deuteron originating from NBI into the first wall could have some contribution on the high hydrogen retention of the first wall.