ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
C. J. Murphy, P. M. Anderson, C. J. Lasnier
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 539-543
Technical Paper | The Technology of Fusion Energy - High Heat Flux Components | doi.org/10.13182/FST07-A1544
Articles are hosted by Taylor and Francis Online.
The lower divertor of the DIII-D tokamak has been modified to provide improved density control of the tokamak plasma during operation in a high triangularity double-null configuration. Union Carbide ATJ grade graphite tiles covering the new lower divertor and vessel floor were designed to have better tile-to-tile alignment and to withstand higher heat flux than existing tiles.Gaps between tiles were successfully reduced from 2.5 to 0.4 mm and tile top surface alignment was greatly improved from 1.0 to 0.1 mm. Small tile gaps along with good vertical edge alignment greatly reduce the number and size of thin edges visible to the plasma, thus minimizing possible carbon introduction into the plasma. Close tile-to-tile alignment was the result of the very flat divertor plate surface, carefully controlled tile positioning, well-machined graphite tiles, and hand filing.Tiles were specified to survive 27 MJ of energy deposited per toroidal row of tiles during a 10 s shot period. When this energy is applied over the narrow triangular heat flux profiles originally specified, modeling shows that the tiles exceed maximum allowable tensile stress. Modeling does show that the tiles are able to absorb the 27 MJ per row without exceeding stress limits in cases where the heat flux profile is less focused than the original design specification.This paper will compare tile design analysis with operational experience obtained during the first 12-week operations campaign with the new divertor.