ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
C. J. Murphy, P. M. Anderson, C. J. Lasnier
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 539-543
Technical Paper | The Technology of Fusion Energy - High Heat Flux Components | doi.org/10.13182/FST07-A1544
Articles are hosted by Taylor and Francis Online.
The lower divertor of the DIII-D tokamak has been modified to provide improved density control of the tokamak plasma during operation in a high triangularity double-null configuration. Union Carbide ATJ grade graphite tiles covering the new lower divertor and vessel floor were designed to have better tile-to-tile alignment and to withstand higher heat flux than existing tiles.Gaps between tiles were successfully reduced from 2.5 to 0.4 mm and tile top surface alignment was greatly improved from 1.0 to 0.1 mm. Small tile gaps along with good vertical edge alignment greatly reduce the number and size of thin edges visible to the plasma, thus minimizing possible carbon introduction into the plasma. Close tile-to-tile alignment was the result of the very flat divertor plate surface, carefully controlled tile positioning, well-machined graphite tiles, and hand filing.Tiles were specified to survive 27 MJ of energy deposited per toroidal row of tiles during a 10 s shot period. When this energy is applied over the narrow triangular heat flux profiles originally specified, modeling shows that the tiles exceed maximum allowable tensile stress. Modeling does show that the tiles are able to absorb the 27 MJ per row without exceeding stress limits in cases where the heat flux profile is less focused than the original design specification.This paper will compare tile design analysis with operational experience obtained during the first 12-week operations campaign with the new divertor.