ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
C. J. Murphy, P. M. Anderson, C. J. Lasnier
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 539-543
Technical Paper | The Technology of Fusion Energy - High Heat Flux Components | doi.org/10.13182/FST07-A1544
Articles are hosted by Taylor and Francis Online.
The lower divertor of the DIII-D tokamak has been modified to provide improved density control of the tokamak plasma during operation in a high triangularity double-null configuration. Union Carbide ATJ grade graphite tiles covering the new lower divertor and vessel floor were designed to have better tile-to-tile alignment and to withstand higher heat flux than existing tiles.Gaps between tiles were successfully reduced from 2.5 to 0.4 mm and tile top surface alignment was greatly improved from 1.0 to 0.1 mm. Small tile gaps along with good vertical edge alignment greatly reduce the number and size of thin edges visible to the plasma, thus minimizing possible carbon introduction into the plasma. Close tile-to-tile alignment was the result of the very flat divertor plate surface, carefully controlled tile positioning, well-machined graphite tiles, and hand filing.Tiles were specified to survive 27 MJ of energy deposited per toroidal row of tiles during a 10 s shot period. When this energy is applied over the narrow triangular heat flux profiles originally specified, modeling shows that the tiles exceed maximum allowable tensile stress. Modeling does show that the tiles are able to absorb the 27 MJ per row without exceeding stress limits in cases where the heat flux profile is less focused than the original design specification.This paper will compare tile design analysis with operational experience obtained during the first 12-week operations campaign with the new divertor.