ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
L. Crosatti, D. L. Sadowski, J. B. Weathers, S. I. Abdel-Khalik, M. Yoda, ARIES Team
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 531-538
Technical Paper | The Technology of Fusion Energy - High Heat Flux Components | doi.org/10.13182/FST07-A1543
Articles are hosted by Taylor and Francis Online.
As a part of the ARIES-CS compact stellarator power plant study, a modular, helium-cooled, T-tube divertor design that can accommodate a peak heat load of 10 MW/m2 has been proposed. Detailed analyses have been performed using the FLUENT[registered] CFD software package to evaluate the thermal performance at the nominal design and operating conditions. Extremely high heat transfer coefficients (>40 kW/(m2-K)) have been predicted. An experimental investigation has been undertaken to validate the results of the numerical simulations. A test module which closely simulates the geometry of the proposed He-cooled T-tube divertor has been tested using air as the coolant while maintaining the same non-dimensional parameter ranges as the He-cooled T-tube divertor design. Axial and azimuthal variations of the local heat transfer coefficient have been measured over a wide range of operating conditions. The experimental data closely match the model predictions. The results of this investigation show that the model can be used with confidence in future design analyses of the T-tube divertor, as well as similar types of gas-cooled high heat flux components.