ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
T. Koehler, M. Yoda, S. I. Abdel-Khalik, D. L. Sadowski, S. Shin
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 526-530
Technical Paper | The Technology of Fusion Energy - High Heat Flux Components | doi.org/10.13182/FST07-A1542
Articles are hosted by Taylor and Francis Online.
The liquid surfaces of liquid-protected high heat flux plasma-facing components may be subject to large temperature gradients caused by non-uniform incident particle and heat flux. Thermocapillary flows due to such gradients can potentially cause dry-out in high-temperature regions. Experimental and numerical investigations have been conducted to determine the maximum allowable non-dimensional temperature gradient just before rupture in thin liquid films of various aspect ratios and viscosities . Experiments were conducted using a needle contact method to measure the liquid film height of axisymmetric silicone oil ( = 4.8 × 10-3 Ns/m2-9.6 × 10-1 Ns/m2) films for aspect ratios of 0.0065 to 0.02 on a non-isothermal stainless steel surface. The experimental data were compared with predictions from both an axisymmetric asymptotic analysis for the steady-state film height for thin layers and a direct numerical simulation using the level contour reconstruction method for thicker layers. The results of this investigation will provide component designers with experimentally-validated limits on the maximum allowable temperature radients to prevent local dry spot formation and possible burnout.