ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
T. Koehler, M. Yoda, S. I. Abdel-Khalik, D. L. Sadowski, S. Shin
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 526-530
Technical Paper | The Technology of Fusion Energy - High Heat Flux Components | doi.org/10.13182/FST07-A1542
Articles are hosted by Taylor and Francis Online.
The liquid surfaces of liquid-protected high heat flux plasma-facing components may be subject to large temperature gradients caused by non-uniform incident particle and heat flux. Thermocapillary flows due to such gradients can potentially cause dry-out in high-temperature regions. Experimental and numerical investigations have been conducted to determine the maximum allowable non-dimensional temperature gradient just before rupture in thin liquid films of various aspect ratios and viscosities . Experiments were conducted using a needle contact method to measure the liquid film height of axisymmetric silicone oil ( = 4.8 × 10-3 Ns/m2-9.6 × 10-1 Ns/m2) films for aspect ratios of 0.0065 to 0.02 on a non-isothermal stainless steel surface. The experimental data were compared with predictions from both an axisymmetric asymptotic analysis for the steady-state film height for thin layers and a direct numerical simulation using the level contour reconstruction method for thicker layers. The results of this investigation will provide component designers with experimentally-validated limits on the maximum allowable temperature radients to prevent local dry spot formation and possible burnout.