ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
T. Koehler, M. Yoda, S. I. Abdel-Khalik, D. L. Sadowski, S. Shin
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 526-530
Technical Paper | The Technology of Fusion Energy - High Heat Flux Components | doi.org/10.13182/FST07-A1542
Articles are hosted by Taylor and Francis Online.
The liquid surfaces of liquid-protected high heat flux plasma-facing components may be subject to large temperature gradients caused by non-uniform incident particle and heat flux. Thermocapillary flows due to such gradients can potentially cause dry-out in high-temperature regions. Experimental and numerical investigations have been conducted to determine the maximum allowable non-dimensional temperature gradient just before rupture in thin liquid films of various aspect ratios and viscosities . Experiments were conducted using a needle contact method to measure the liquid film height of axisymmetric silicone oil ( = 4.8 × 10-3 Ns/m2-9.6 × 10-1 Ns/m2) films for aspect ratios of 0.0065 to 0.02 on a non-isothermal stainless steel surface. The experimental data were compared with predictions from both an axisymmetric asymptotic analysis for the steady-state film height for thin layers and a direct numerical simulation using the level contour reconstruction method for thicker layers. The results of this investigation will provide component designers with experimentally-validated limits on the maximum allowable temperature radients to prevent local dry spot formation and possible burnout.