ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Xiao Pan, Xianglin Wu, Geng Fu, James F. Stubbins
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 521-525
Technical Paper | The Technology of Fusion Energy - High Heat Flux Components | doi.org/10.13182/FST07-A1541
Articles are hosted by Taylor and Francis Online.
The fatigue and creep-fatigue response of OFHC copper with three different grain sizes has been studied. Tests were carried out at room temperature and hold times were applied at maximum tensile and compressive strain to simulate the creep effect. The results show that fatigue life decreases with increasing grain size for a fixed applied strain range. Hold times resulted in a major reduction in the number of cycles to failure. This reduction was largest at the lowest strain amplitudes and the longest fatigue lives, the region of most interest for component design. The large reduction in fatigue life is apparently due to a change in the crack initiation mode from transgranular in continuous cycle fatigue to intergranular in creep-fatigue conditions.