ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
James P. Blanchard, Jens Conzen
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 506-510
Technical Paper | The Technology of Fusion Energy - Inertial Fusion Technology: Targets and Chambers | doi.org/10.13182/FST07-A1539
Articles are hosted by Taylor and Francis Online.
Rapid heating by x-rays and ions in Inertial Fusion Energy (IFE) chambers will produce stress waves in dry chamber walls, in some cases leading to damage that will ultimately fail the structure. These waves can affect the surface or propagate to the substrate and produce delamination. Hence, it is important that these waves be understood. Models exist for thermally induced stress waves resulting from surface heating, but models with volumetric heating have not been presented for IFE conditions. In this paper we develop models for elastic stresses caused by rapid volumetric heating in a half-space. The stress wave models are obtained analytically for heating distributions which are both uniform over a finite region and exponentially decaying over the entire depth. These two cases cover the relevant heating for a typical IFE threat. Results are given for both x-ray and ion heating using threats from a direct drive target developed for the High Average Power Laser (HAPL) target.