ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Sal B. Rodriguez, Jason Cook
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 499-505
Technical Paper | The Technology of Fusion Energy - Inertial Fusion Technology: Targets and Chambers | doi.org/10.13182/FST07-A1538
Articles are hosted by Taylor and Francis Online.
The Z-IFE (inertial fusion energy) plant is a unique, inertial confined, fusion energy concept in which high yield targets will be ignited to fusion, yielding brief energy bursts in the 3 to 20-gigajoule range. The fusion reaction yields an energetic burst that consists principally of neutrons, X rays, and charged particles. The X rays rapidly attenuate in matter, causing the material to expand rapidly, thus generating a strong shock wave. This shock wave must be mitigated if the Z-IFE chamber is to last for a period of 30 to 50 years.ALEGRA simulations were conducted for a hypothetical Z-IFE chamber filled with argon gas and ionized by an X ray source. The calculations employed a set of sophisticated models, including Saha ionization, XSN and CDF opacities, bremsstrahlung radiation, linearized diffusion of X ray photons for a blackbody, fully-coupled magnetohydrodynamic models, electron thermal conduction, Spitzer thermal conductivity with cold material interpolation, and Mie-Gruneisen EOS.In order to obtain confidence in the results, a laser experiment from UCSD was simulated. In the experiment, laser photons were used to ionize argon gas. The simulations showed that ALEGRA quite successfully calculated the measured temperature, level of ionization, and spatial evolution of the argon plasma.