ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Sal B. Rodriguez, Jason Cook
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 499-505
Technical Paper | The Technology of Fusion Energy - Inertial Fusion Technology: Targets and Chambers | doi.org/10.13182/FST07-A1538
Articles are hosted by Taylor and Francis Online.
The Z-IFE (inertial fusion energy) plant is a unique, inertial confined, fusion energy concept in which high yield targets will be ignited to fusion, yielding brief energy bursts in the 3 to 20-gigajoule range. The fusion reaction yields an energetic burst that consists principally of neutrons, X rays, and charged particles. The X rays rapidly attenuate in matter, causing the material to expand rapidly, thus generating a strong shock wave. This shock wave must be mitigated if the Z-IFE chamber is to last for a period of 30 to 50 years.ALEGRA simulations were conducted for a hypothetical Z-IFE chamber filled with argon gas and ionized by an X ray source. The calculations employed a set of sophisticated models, including Saha ionization, XSN and CDF opacities, bremsstrahlung radiation, linearized diffusion of X ray photons for a blackbody, fully-coupled magnetohydrodynamic models, electron thermal conduction, Spitzer thermal conductivity with cold material interpolation, and Mie-Gruneisen EOS.In order to obtain confidence in the results, a laser experiment from UCSD was simulated. In the experiment, laser photons were used to ionize argon gas. The simulations showed that ALEGRA quite successfully calculated the measured temperature, level of ionization, and spatial evolution of the argon plasma.