ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Celine C. Lascar, S. I. Abdel-Khalik, D. L. Sadowski
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 489-493
Technical Paper | The Technology of Fusion Energy - Inertial Fusion Technology: Targets and Chambers | doi.org/10.13182/FST07-A1536
Articles are hosted by Taylor and Francis Online.
In a high-yield, low repetition rate Inertial Fusion Energy (IFE) system, such as the Z-Pinch IFE reactor, compressible liquid/gas jets offer the opportunity to protect the cavity walls from the target X-rays, ions and neutrons. They can especially limit and mitigate the mechanical consequences of the shock waves produced by rapid heating/evaporation of the protective jets. In this investigation, experiments have been conducted to examine the stability of two-phase jets and quantify the extent by which they can attenuate a shock wave. An exploding wire was used to generate a shock wave at the center of downward flowing annular single- and two-phase jets within a concentric cylindrical enclosure. The pressure history at the enclosure wall was recorded as the shock wave propagated through the attenuating two-phase medium. Experiments were conducted using two different-size jets and enclosures at various liquid velocities, void fractions, and initial shock strength. The data showed that stable coherent jets could be established and steadily maintained with relatively high void fractions and that significant attenuation in shock strength could be attained at relatively modest void fractions. The data obtained in this investigation can be used to validate predictions of shock attenuation models for future IFE reactor cavities.