ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Disa seeks NRC license for its uranium mine waste remediation tech
The Nuclear Regulatory Commission has received a license application from Disa Technologies to use high-pressure slurry ablation (HPSA) technology for remediating abandoned uranium mine waste at inactive mining sites. Disa’s headquartersin are Casper, Wyo.
Andreas Dinklage, Rainer Fischer, Robert Wolf
Fusion Science and Technology | Volume 62 | Number 3 | November 2012 | Pages 419-427
Selected Paper from Seventh Fusion Data Validation Workshop 2012 (Part 2) | doi.org/10.13182/FST12-A15341
Articles are hosted by Taylor and Francis Online.
A new concept for the design of diagnostics for fusion devices is introduced. The concept is based on the combination of sets of different diagnostics to an integrated meta-diagnostic. The approach applies methods from Bayesian experimental design and allows for quantitative assessments of differing meta-diagnostics. A specific example is the combination of interferometry and Thomson scattering data to determine the capabilities of the proposed method. The approach also determines the minimum sets of diagnostics required to determine physics quantities with a given accuracy. This is relevant for the control of reactor-relevant scenarios such as with DEMO.