ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Spent fuel transfer project completed at INL
Work crews at Idaho National Laboratory have transferred 40 spent nuclear fuel canisters into long-term storage vaults, the Department of Energy’s Office of Environmental Management has reported.
K. Ohkubo, S. Kubo, T. Shimozuma, Y. Yoshimura, H. Igami, S. Kobayashi
Fusion Science and Technology | Volume 62 | Number 3 | November 2012 | Pages 389-402
Technical Paper | doi.org/10.13182/FST12-A15338
Articles are hosted by Taylor and Francis Online.
In the system of electron cyclotron heating, highly overmoded, corrugated circular waveguides are used. To analyze propagating mode content in the waveguide, burn patterns of the thermal paper placed on the waveguide aperture are observed at several positions. Theoretical burn patterns are obtained by taking into account a nonlinear grayscale response of the thermal paper to the calculated power profiles. We have developed a new method of mode analysis by nonlinear optimization, which is based on an iterative error reduction of differences between observed and theoretical patterns. To examine the status of polarization, the transformation between hybrid modes and linearly polarized (LP) modes is derived. The method is applied to the 82.7-GHz transmission line connected with the gyrotron. The propagating wave is linear polarized and consists of [approximately]4% of the LP11 odd mode, [approximately]95% of the LP01 mode, and [approximately]1% of other modes. The calculated burn pattern is similar to the observed one, like a plateau. By using both center of power and weighted averages of the perpendicular wavenumber in these profiles, offset and tilting angles of an injecting electromagnetic beam to the waveguide entrance are inferred. These are verified to be consistent with the results by the coupling code of a Gaussian beam with hybrid modes.