ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Diana Schroen, Dan Goodin, Jared Hund, Reny Paguio, Barry McQuillan, Jonathan Streit
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 468-472
Technical Paper | The Technology of Fusion Energy - Inertial Fusion Technology: Targets and Chambers | doi.org/10.13182/FST07-A1532
Articles are hosted by Taylor and Francis Online.
The baseline design for the laser-driven Inertial Fusion Energy (IFE) target is a 4.6 mm foam capsule with a polymer overcoat of 1 to 5 microns. The specifications for this overcoat include surface finish, permeation properties, uniform wall thickness and conformal coating of the foam shell. Many of these specifications are not unlike the full density polymer National Ignition Facility targets, but the foam shell adds to the fabrication difficulty. Since the foam surface is composed of open cells, creating the overcoat by typical vacuum deposition processes would start by replicating the foam surface making it very difficult to achieve the required surface specification. Instead an overcoat is made using interfacial polymerization at the edge of the foam surface. This is done by filling the foam shell with an organic solvent containing one reactant, then placing the shell into water containing another reactant. The reaction occurs only at the interface of the two solutions.This technique was pioneered at the Institute of Laser Engineering (Osaka University) with 0.8 mm diameter methacrylate shells. The process was later extended to 0.9 mm diameter resorcinol-formaldehyde and divinyl benzene (DVB) shells. For the High Average Power Laser Program target we need to extend the process to 4.6 mm diameter DVB foam shells. The properties of the DVB foam and the larger diameter of the shell make it more difficult to produce a gas tight shell. This report will explain how we are adapting the process and the results to date.