ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Diana Schroen, Dan Goodin, Jared Hund, Reny Paguio, Barry McQuillan, Jonathan Streit
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 468-472
Technical Paper | The Technology of Fusion Energy - Inertial Fusion Technology: Targets and Chambers | doi.org/10.13182/FST07-A1532
Articles are hosted by Taylor and Francis Online.
The baseline design for the laser-driven Inertial Fusion Energy (IFE) target is a 4.6 mm foam capsule with a polymer overcoat of 1 to 5 microns. The specifications for this overcoat include surface finish, permeation properties, uniform wall thickness and conformal coating of the foam shell. Many of these specifications are not unlike the full density polymer National Ignition Facility targets, but the foam shell adds to the fabrication difficulty. Since the foam surface is composed of open cells, creating the overcoat by typical vacuum deposition processes would start by replicating the foam surface making it very difficult to achieve the required surface specification. Instead an overcoat is made using interfacial polymerization at the edge of the foam surface. This is done by filling the foam shell with an organic solvent containing one reactant, then placing the shell into water containing another reactant. The reaction occurs only at the interface of the two solutions.This technique was pioneered at the Institute of Laser Engineering (Osaka University) with 0.8 mm diameter methacrylate shells. The process was later extended to 0.9 mm diameter resorcinol-formaldehyde and divinyl benzene (DVB) shells. For the High Average Power Laser Program target we need to extend the process to 4.6 mm diameter DVB foam shells. The properties of the DVB foam and the larger diameter of the shell make it more difficult to produce a gas tight shell. This report will explain how we are adapting the process and the results to date.