ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Diana Schroen, Dan Goodin, Jared Hund, Reny Paguio, Barry McQuillan, Jonathan Streit
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 468-472
Technical Paper | The Technology of Fusion Energy - Inertial Fusion Technology: Targets and Chambers | doi.org/10.13182/FST07-A1532
Articles are hosted by Taylor and Francis Online.
The baseline design for the laser-driven Inertial Fusion Energy (IFE) target is a 4.6 mm foam capsule with a polymer overcoat of 1 to 5 microns. The specifications for this overcoat include surface finish, permeation properties, uniform wall thickness and conformal coating of the foam shell. Many of these specifications are not unlike the full density polymer National Ignition Facility targets, but the foam shell adds to the fabrication difficulty. Since the foam surface is composed of open cells, creating the overcoat by typical vacuum deposition processes would start by replicating the foam surface making it very difficult to achieve the required surface specification. Instead an overcoat is made using interfacial polymerization at the edge of the foam surface. This is done by filling the foam shell with an organic solvent containing one reactant, then placing the shell into water containing another reactant. The reaction occurs only at the interface of the two solutions.This technique was pioneered at the Institute of Laser Engineering (Osaka University) with 0.8 mm diameter methacrylate shells. The process was later extended to 0.9 mm diameter resorcinol-formaldehyde and divinyl benzene (DVB) shells. For the High Average Power Laser Program target we need to extend the process to 4.6 mm diameter DVB foam shells. The properties of the DVB foam and the larger diameter of the shell make it more difficult to produce a gas tight shell. This report will explain how we are adapting the process and the results to date.