ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
R. Gallix, P. Mijatovic
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 464-467
Technical Paper | The Technology of Fusion Energy - Inertial Fusion Technology: Targets and Chambers | doi.org/10.13182/FST07-A1531
Articles are hosted by Taylor and Francis Online.
In a central building of the power plant, the DT fuel is formed into a very smooth and uniform layer of ice at ~18 K inside a beryllium shell; placed in a cryogenic target assembly that provides support, cooling, and thermal insulation; and put into an evacuated replaceable transfer line (RTL) at room temperature (RT). The RTL is transported and inserted into one of the reactor chambers at 923 K and shot, releasing 3 GJ of nuclear fusion energy. The DT ice layer must stay below ~19.7 K to keep its geometric integrity until shot time.Detailed transient thermal analyses of the cryogenic target assembly in the RTL were performed. They showed that, with the original design, the DT ice would reach 24.6 K by shot time. With an improved design providing better thermal insulation of the target, the ice temperature would reach only 19.1 K, meeting the requirement for successful shots.This paper compares the thermal analysis results for both designs, which included conduction and radiation effects with temperature-dependent material properties.