ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Ron Petzoldt, Neil Alexander, Lane Carlson, Graham Flint, Dan Goodin, Jon Spalding, Mark Tillack
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 454-458
Technical Paper | The Technology of Fusion Energy - Inertial Fusion Technology: Targets and Chambers | doi.org/10.13182/FST07-A1529
Articles are hosted by Taylor and Francis Online.
Target engagement is the process of measuring the target trajectory and directing the driver beams to hit the target at a position that is predicted based on these measurements. New target engagement concepts have been proposed in the last few years to continuously track the targets and to verify that the tracking system is aligned with the driver beams for each shot.For transverse position, a laser beam continuously backlights the target and the position of the Poisson spot in the center of the target's shadow is measured. Axial target displacement is measured using a laser interferometer and counting interference fringes as the target moves away from the laser source. Final steering corrections use a "glint" reflected off the target ~1 ms prior to firing the laser beams and collected in a separate Position Sensitive Detector (PSD) for each driver beamlet. The position of the glint on the PSD is compared to the position of an alignment beam that is collinear with the driver beam. Steering corrections are then made based on the difference in position of the two spots reaching the PSD.