ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
James P. Blanchard, René Raffray
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 440-444
Technical Paper | The Technology of Fusion Energy - Inertial Fusion Technology: Targets and Chambers | doi.org/10.13182/FST07-A1527
Articles are hosted by Taylor and Francis Online.
A laser fusion chamber must absorb the energy emitted by the target in such a way that the plant can achieve a commercially viable power conversion efficiency. This must be accomplished with a design that can reliably withstand on the order of a billion shots. For a dry chamber wall, the key lifetime issues are thermo-mechanical effects resulting from the rapid heating, ion effects, such as blistering and sputtering, and radiation effects. These issues define the chamber size by providing flux limits for the various threats. In cases where a dry, unprotected wall cannot provide an adequate lifetime, measures must be taken to reduce the threat to the wall. Previously proposed approaches include filling the chamber with sufficient gas to stop the majority of the ions before they reach the wall or redirection of the ions by a cusp field. Other design trade-offs that must be addressed include the need to reduce heating of the target during injection and the need for adequate clearing of the chamber between shots. In this paper we provide a review of the chamber design approaches required for commercially viable laser fusion power plants, the issues driving those designs, and some system-level analyses that provide insight into the implications of these design issues for the overall economics of a commercial plant.