ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
James P. Blanchard, René Raffray
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 440-444
Technical Paper | The Technology of Fusion Energy - Inertial Fusion Technology: Targets and Chambers | doi.org/10.13182/FST07-A1527
Articles are hosted by Taylor and Francis Online.
A laser fusion chamber must absorb the energy emitted by the target in such a way that the plant can achieve a commercially viable power conversion efficiency. This must be accomplished with a design that can reliably withstand on the order of a billion shots. For a dry chamber wall, the key lifetime issues are thermo-mechanical effects resulting from the rapid heating, ion effects, such as blistering and sputtering, and radiation effects. These issues define the chamber size by providing flux limits for the various threats. In cases where a dry, unprotected wall cannot provide an adequate lifetime, measures must be taken to reduce the threat to the wall. Previously proposed approaches include filling the chamber with sufficient gas to stop the majority of the ions before they reach the wall or redirection of the ions by a cusp field. Other design trade-offs that must be addressed include the need to reduce heating of the target during injection and the need for adequate clearing of the chamber between shots. In this paper we provide a review of the chamber design approaches required for commercially viable laser fusion power plants, the issues driving those designs, and some system-level analyses that provide insight into the implications of these design issues for the overall economics of a commercial plant.