ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
J. T. Scoville
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 398-403
Technical Paper | The Technology of Fusion Energy - Experimental Devices and Advanced Designs | doi.org/10.13182/FST07-A1520
Articles are hosted by Taylor and Francis Online.
Until the recent experimental campaign in 2006, all the neutral beam systems on the DIII-D tokamak injected power with the momentum in the same direction as the usual plasma current ("co-injection"). A major modification made during the April 2005-March 2006 shutdown period rotated one of the two-source beamlines to allow injecting power with the momentum opposite that of the plasma current ("counter-injection"). This modification provides the capability of injecting up to 10 MW of neutral beam power with zero net momentum input to the plasma. Decoupling the injected momentum and power opens a previously inaccessible parameter space for experiments that study the effect of rotation on various plasma instabilities, transport, and operational scenarios.Rotating the 5 MW neutral beamline presented significant technical challenges. The beamline and several major subsystems required extensive dismantling and rebuilding, and a careful alignment of the ion sources was required to document the new injection paths. We present a summary of the tasks required for the beamline rotation, describe major technical issues addressed, and discuss the advantages of the new configuration.