ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
D. Mueller, R. Raman, M. G. Bell, T. R. Jarboe, B. LeBlanc, R. Maqueda, S. Sabbagh, B. A. Nelson
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 393-397
Technical Paper | The Technology of Fusion Energy - Experimental Devices and Advanced Designs | doi.org/10.13182/FST07-A1519
Articles are hosted by Taylor and Francis Online.
Future toroidal magnetic confinement fusion plasma devices such as the Component Test Facility (CTF) require non-inductive toroidal current drive. A new method of non-inductive startup, referred to as transient coaxial helicity injection (Transient CHI), has been developed on the Helicity Injected Torus (HIT-II) experiment and the National Spherical Torus Experiment NSTX). In this method, plasma current is produced by discharging a capacitor bank between coaxial electrodes in the presence of toroidal and poloidal magnetic fields chosen such that the plasma rapidly expands into the chamber. When the injected current is rapidly decreased, magnetic reconnection occurs near the injection electrodes with the toroidal plasma current forming closed flux surfaces. In NSTX, transient CHI has demonstrated closed-flux current generation of up to 160 kA, without the use of a central solenoid. Detailed experimental measurements made on NSTX include fast time-scale visible imaging of the entire process.