ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
D. Mueller, R. Raman, M. G. Bell, T. R. Jarboe, B. LeBlanc, R. Maqueda, S. Sabbagh, B. A. Nelson
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 393-397
Technical Paper | The Technology of Fusion Energy - Experimental Devices and Advanced Designs | doi.org/10.13182/FST07-A1519
Articles are hosted by Taylor and Francis Online.
Future toroidal magnetic confinement fusion plasma devices such as the Component Test Facility (CTF) require non-inductive toroidal current drive. A new method of non-inductive startup, referred to as transient coaxial helicity injection (Transient CHI), has been developed on the Helicity Injected Torus (HIT-II) experiment and the National Spherical Torus Experiment NSTX). In this method, plasma current is produced by discharging a capacitor bank between coaxial electrodes in the presence of toroidal and poloidal magnetic fields chosen such that the plasma rapidly expands into the chamber. When the injected current is rapidly decreased, magnetic reconnection occurs near the injection electrodes with the toroidal plasma current forming closed flux surfaces. In NSTX, transient CHI has demonstrated closed-flux current generation of up to 160 kA, without the use of a central solenoid. Detailed experimental measurements made on NSTX include fast time-scale visible imaging of the entire process.