ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Edgard Gnansounou, Denis Bednyagin
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 388-393
Technical Paper | The Technology of Fusion Energy - Experimental Devices and Advanced Designs | doi.org/10.13182/FST07-A1518
Articles are hosted by Taylor and Francis Online.
This paper examines the global potential for deployment of fusion power through elaboration of multi-regional long-term electricity market scenarios for the time horizon 2100. The probabilistic simulation dynamic programming model PLANELEC-Pro was applied in order to determine the expansion plans of the power generation systems in different world regions that adequately meet the projected electricity demand at minimum cost given the quality-of-service and CO2 emissions constraints. It was found that the deployment of total 330-950 GWe of fusion power world-wide could allow for reducing 1.8-4.3 % of global CO2 emissions from electricity generation, while entailing a slight increase of levelized system electricity cost (by approx. 0.1-0.4 [euro]cents/kWh). By the end of century, the estimated share of fusion in regional electricity mixes varies from 1.5 to 23% depending on the region. It is concluded that economic analysis of fusion technology should be complemented with the evaluation of the whole fusion RTD program in terms of social rate of return taking into account its external "spillover" benefits.