ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Edgard Gnansounou, Denis Bednyagin
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 388-393
Technical Paper | The Technology of Fusion Energy - Experimental Devices and Advanced Designs | doi.org/10.13182/FST07-A1518
Articles are hosted by Taylor and Francis Online.
This paper examines the global potential for deployment of fusion power through elaboration of multi-regional long-term electricity market scenarios for the time horizon 2100. The probabilistic simulation dynamic programming model PLANELEC-Pro was applied in order to determine the expansion plans of the power generation systems in different world regions that adequately meet the projected electricity demand at minimum cost given the quality-of-service and CO2 emissions constraints. It was found that the deployment of total 330-950 GWe of fusion power world-wide could allow for reducing 1.8-4.3 % of global CO2 emissions from electricity generation, while entailing a slight increase of levelized system electricity cost (by approx. 0.1-0.4 [euro]cents/kWh). By the end of century, the estimated share of fusion in regional electricity mixes varies from 1.5 to 23% depending on the region. It is concluded that economic analysis of fusion technology should be complemented with the evaluation of the whole fusion RTD program in terms of social rate of return taking into account its external "spillover" benefits.