ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
Nobuyuki Hosogane, JT-60SA Design Team, Japan-Europe Satellite Tokamak Working Group
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 375-382
Technical Paper | The Technology of Fusion Energy - Experimental Devices and Advanced Designs | doi.org/10.13182/FST07-A1516
Articles are hosted by Taylor and Francis Online.
The JT-60SA (Super Advanced) project is a joint project of the ITER Satellite Tokamak program and the National Centralized Tokamak program in Japan with missions of supporting ITER, complementing ITER and exploring advanced issues toward DEMO. JT-60SA is a tokamak with superconducting coils, equipped with a poloidal field coil system with wide plasma shape controllability, upper and lower divertors with different shapes, NBI and ECRF with heating power 41 MW and various heating methods, in-vessel coils for suppressing MHD instabilities. With these functions, possibilities of producing ELMy H-mode with improved confinement, full non-inductive current drive of high beta plasmas (N=3.7 at IP=3.5 MA, N =4.4 at IP=2.4 MA) and break-even class plasmas necessary for accomplishing the mission have been confirmed. The engineering design of JT-60SA is being done taking large annual neutron production into account. Double skin walls filled with borated water or boron doped concrete are employed for the vacuum vessel and cryostat, respectively, for neutron shield. Divertors structures and first walls are being designed so as to be changed with remote handling systems in the high radiation circumference.