ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
R. L. Boivin, DIII-D Team
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 367-374
Technical Paper | The Technology of Fusion Energy - Experimental Devices and Advanced Designs | doi.org/10.13182/FST07-A1515
Articles are hosted by Taylor and Francis Online.
The DIII-D National Fusion Facility has long been a center of innovation and development of diagnostics for magnetic fusion devices. The DIII-D device, a moderate size tokamak, with a high flexibility shaping coil set, neutral beam injection (NBI), electron cyclotron heating (ECH) and ion cyclotron heating (ICH), supports a very broad research program infusion science, including critical aspects related to burning plasmas expected to be encountered in ITER. This scientific program is supported by a large set of diagnostics (approximately 50), which is the product of a highly collaborative program between universities, national laboratories and industry. Although many diagnostic systems are now routinely employed to measure a wide range of plasma parameters, such as temperature, rotation, density and current profiles, there are many areas that are inherently difficult or prohibitively expensive to diagnose. Such areas include the measurements associated with energetic ion populations or with the characterization of plasma flows in the divertor/edge area. In addition, the study of burning plasmas will require the development of new and updated techniques, which need to be developed and tested in existing devices in relevant plasma conditions.