ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
R. L. Boivin, DIII-D Team
Fusion Science and Technology | Volume 52 | Number 3 | October 2007 | Pages 367-374
Technical Paper | The Technology of Fusion Energy - Experimental Devices and Advanced Designs | doi.org/10.13182/FST07-A1515
Articles are hosted by Taylor and Francis Online.
The DIII-D National Fusion Facility has long been a center of innovation and development of diagnostics for magnetic fusion devices. The DIII-D device, a moderate size tokamak, with a high flexibility shaping coil set, neutral beam injection (NBI), electron cyclotron heating (ECH) and ion cyclotron heating (ICH), supports a very broad research program infusion science, including critical aspects related to burning plasmas expected to be encountered in ITER. This scientific program is supported by a large set of diagnostics (approximately 50), which is the product of a highly collaborative program between universities, national laboratories and industry. Although many diagnostic systems are now routinely employed to measure a wide range of plasma parameters, such as temperature, rotation, density and current profiles, there are many areas that are inherently difficult or prohibitively expensive to diagnose. Such areas include the measurements associated with energetic ion populations or with the characterization of plasma flows in the divertor/edge area. In addition, the study of burning plasmas will require the development of new and updated techniques, which need to be developed and tested in existing devices in relevant plasma conditions.