ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
V. E. Zapevalov
Fusion Science and Technology | Volume 52 | Number 2 | August 2007 | Pages 340-344
Technical Paper | Electron Cyclotron Wave Physics, Technology, and Applications - Part 1 | doi.org/10.13182/FST07-A1512
Articles are hosted by Taylor and Francis Online.
Until recently, the development of new gyrotrons was directed mainly at the increase of their operating frequency, power, and efficiency. The output power of modern continuous-wave (cw) gyrotrons has reached 1 MW, and there is a clear tendency to increase this power further to at least up to 1.5 to 2 MW. The efficiency of the best gyrotron tubes reaches 40% without recovering the residual energy of the spent electron beam [collector potential depression (CPD)] in the continuous regimes and 50% in the pulsed one and achieves 50% with one-step CPD in the cw regimes and near 70% in the pulsed regimes. We analyze limitations of the gyrotron output power and efficiency imposed by systems forming helical electron beams, the cavity interaction processes, the transmitting capability of the output window, and the losses of stray radiation in the built-in converter and power dissipation on the collector (including CPD). Some specific examples in applying the different limits to real cases of gyrotrons are discussed. Ways to enhance the power and efficiency of gyrotrons based on the results of this analysis are shown.