ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
V. E. Zapevalov
Fusion Science and Technology | Volume 52 | Number 2 | August 2007 | Pages 340-344
Technical Paper | Electron Cyclotron Wave Physics, Technology, and Applications - Part 1 | doi.org/10.13182/FST07-A1512
Articles are hosted by Taylor and Francis Online.
Until recently, the development of new gyrotrons was directed mainly at the increase of their operating frequency, power, and efficiency. The output power of modern continuous-wave (cw) gyrotrons has reached 1 MW, and there is a clear tendency to increase this power further to at least up to 1.5 to 2 MW. The efficiency of the best gyrotron tubes reaches 40% without recovering the residual energy of the spent electron beam [collector potential depression (CPD)] in the continuous regimes and 50% in the pulsed one and achieves 50% with one-step CPD in the cw regimes and near 70% in the pulsed regimes. We analyze limitations of the gyrotron output power and efficiency imposed by systems forming helical electron beams, the cavity interaction processes, the transmitting capability of the output window, and the losses of stray radiation in the built-in converter and power dissipation on the collector (including CPD). Some specific examples in applying the different limits to real cases of gyrotrons are discussed. Ways to enhance the power and efficiency of gyrotrons based on the results of this analysis are shown.