ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
V. E. Zapevalov
Fusion Science and Technology | Volume 52 | Number 2 | August 2007 | Pages 340-344
Technical Paper | Electron Cyclotron Wave Physics, Technology, and Applications - Part 1 | doi.org/10.13182/FST07-A1512
Articles are hosted by Taylor and Francis Online.
Until recently, the development of new gyrotrons was directed mainly at the increase of their operating frequency, power, and efficiency. The output power of modern continuous-wave (cw) gyrotrons has reached 1 MW, and there is a clear tendency to increase this power further to at least up to 1.5 to 2 MW. The efficiency of the best gyrotron tubes reaches 40% without recovering the residual energy of the spent electron beam [collector potential depression (CPD)] in the continuous regimes and 50% in the pulsed one and achieves 50% with one-step CPD in the cw regimes and near 70% in the pulsed regimes. We analyze limitations of the gyrotron output power and efficiency imposed by systems forming helical electron beams, the cavity interaction processes, the transmitting capability of the output window, and the losses of stray radiation in the built-in converter and power dissipation on the collector (including CPD). Some specific examples in applying the different limits to real cases of gyrotrons are discussed. Ways to enhance the power and efficiency of gyrotrons based on the results of this analysis are shown.