ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
V. Erckmann, P. Brand, H. Braune, G. Dammertz, G. Gantenbein, W. Kasparek, H. P. Laqua, H. Maassberg, N. B. Marushchenko, G. Michel, M. Thumm, Y. Turkin, M. Weissgerber, A. Weller, W7-X ECRH Team at IPP Greifswald, W7-X ECRH Team at FZK Karlsruhe, W7-X ECRH Team at IPF Stuttgart
Fusion Science and Technology | Volume 52 | Number 2 | August 2007 | Pages 291-312
Technical Paper | Electron Cyclotron Wave Physics, Technology, and Applications - Part 1 | doi.org/10.13182/FST07-A1508
Articles are hosted by Taylor and Francis Online.
The Wendelstein 7X (W7-X) stellarator (R = 5.5 m, a = 0.55 m, B < 3.0 T), which at present is being built at Max-Planck-Institut für Plasmaphysik, Greifswald, aims at demonstrating the inherent steady-state capability of stellarators at reactor-relevant plasma parameters. A 10-MW electron cyclotron resonance heating (ECRH) plant with continuous-wave (cw) capability is under construction to meet the scientific objectives. The physics background of the different heating and current drive scenarios is presented. The expected plasma parameters are calculated for different transport assumptions. A newly developed ray-tracing code is used to calculate selected reference scenarios and optimize the electron cyclotron launcher and in-vessel structure. Examples are discussed, and the technological solutions for optimum wave coupling are presented. The ECRH plant consists of ten radio-frequency (rf) modules with 1 MW of power each at 140 GHz. The rf beams are transmitted to the W7-X torus (typically 60 m) via two open multibeam mirror lines with a power-handling capability, which would already satisfy the ITER requirements (24 MW). Integrated full-power, cw tests of two rf modules (gyrotrons and the related transmission line sections) are reported, and the key features of the gyrotron and transmission line technology are presented. As the physics and technology of ECRH for both W7-X and ITER have many similarities, test results from the W7-X ECRH may provide valuable input for the ITER-ECRH plant.