ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
V. Erckmann, P. Brand, H. Braune, G. Dammertz, G. Gantenbein, W. Kasparek, H. P. Laqua, H. Maassberg, N. B. Marushchenko, G. Michel, M. Thumm, Y. Turkin, M. Weissgerber, A. Weller, W7-X ECRH Team at IPP Greifswald, W7-X ECRH Team at FZK Karlsruhe, W7-X ECRH Team at IPF Stuttgart
Fusion Science and Technology | Volume 52 | Number 2 | August 2007 | Pages 291-312
Technical Paper | Electron Cyclotron Wave Physics, Technology, and Applications - Part 1 | doi.org/10.13182/FST07-A1508
Articles are hosted by Taylor and Francis Online.
The Wendelstein 7X (W7-X) stellarator (R = 5.5 m, a = 0.55 m, B < 3.0 T), which at present is being built at Max-Planck-Institut für Plasmaphysik, Greifswald, aims at demonstrating the inherent steady-state capability of stellarators at reactor-relevant plasma parameters. A 10-MW electron cyclotron resonance heating (ECRH) plant with continuous-wave (cw) capability is under construction to meet the scientific objectives. The physics background of the different heating and current drive scenarios is presented. The expected plasma parameters are calculated for different transport assumptions. A newly developed ray-tracing code is used to calculate selected reference scenarios and optimize the electron cyclotron launcher and in-vessel structure. Examples are discussed, and the technological solutions for optimum wave coupling are presented. The ECRH plant consists of ten radio-frequency (rf) modules with 1 MW of power each at 140 GHz. The rf beams are transmitted to the W7-X torus (typically 60 m) via two open multibeam mirror lines with a power-handling capability, which would already satisfy the ITER requirements (24 MW). Integrated full-power, cw tests of two rf modules (gyrotrons and the related transmission line sections) are reported, and the key features of the gyrotron and transmission line technology are presented. As the physics and technology of ECRH for both W7-X and ITER have many similarities, test results from the W7-X ECRH may provide valuable input for the ITER-ECRH plant.