ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
V. Erckmann, P. Brand, H. Braune, G. Dammertz, G. Gantenbein, W. Kasparek, H. P. Laqua, H. Maassberg, N. B. Marushchenko, G. Michel, M. Thumm, Y. Turkin, M. Weissgerber, A. Weller, W7-X ECRH Team at IPP Greifswald, W7-X ECRH Team at FZK Karlsruhe, W7-X ECRH Team at IPF Stuttgart
Fusion Science and Technology | Volume 52 | Number 2 | August 2007 | Pages 291-312
Technical Paper | Electron Cyclotron Wave Physics, Technology, and Applications - Part 1 | doi.org/10.13182/FST07-A1508
Articles are hosted by Taylor and Francis Online.
The Wendelstein 7X (W7-X) stellarator (R = 5.5 m, a = 0.55 m, B < 3.0 T), which at present is being built at Max-Planck-Institut für Plasmaphysik, Greifswald, aims at demonstrating the inherent steady-state capability of stellarators at reactor-relevant plasma parameters. A 10-MW electron cyclotron resonance heating (ECRH) plant with continuous-wave (cw) capability is under construction to meet the scientific objectives. The physics background of the different heating and current drive scenarios is presented. The expected plasma parameters are calculated for different transport assumptions. A newly developed ray-tracing code is used to calculate selected reference scenarios and optimize the electron cyclotron launcher and in-vessel structure. Examples are discussed, and the technological solutions for optimum wave coupling are presented. The ECRH plant consists of ten radio-frequency (rf) modules with 1 MW of power each at 140 GHz. The rf beams are transmitted to the W7-X torus (typically 60 m) via two open multibeam mirror lines with a power-handling capability, which would already satisfy the ITER requirements (24 MW). Integrated full-power, cw tests of two rf modules (gyrotrons and the related transmission line sections) are reported, and the key features of the gyrotron and transmission line technology are presented. As the physics and technology of ECRH for both W7-X and ITER have many similarities, test results from the W7-X ECRH may provide valuable input for the ITER-ECRH plant.