ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
K. Takahashi, N. Kobayashi, J. Ohmori, S. Suzuki, A. Kasugai, K. Sakamoto
Fusion Science and Technology | Volume 52 | Number 2 | August 2007 | Pages 266-280
Technical Paper | Electron Cyclotron Wave Physics, Technology, and Applications - Part 1 | doi.org/10.13182/FST07-A1506
Articles are hosted by Taylor and Francis Online.
Progress on design of an International Thermonuclear Experimental Reactor (ITER) equatorial electron cyclotron launcher with analytical and research and development studies of the components is described. The modified design of the front shield module is proposed with electromagnetic and structure analysis. The analytical investigation of the modified steering mirror design shows that maximum temperature and stress intensity are 289°C and 336 MPa on the mirror surface (copper alloy) and the inner surface of the cooling tube (Type 316 stainless steel) in the mirror, respectively. Maximum stress intensity of the spiral tube to feed cooling water to the steering mirror is calculated to be 139 MPa. These values are less than the allowable level. High heat flux irradiation experiments of the mirror mock-up and fatigue tests of the spiral tube were carried out, and their results proved that the concept of the steering mirror structure was feasible. The results on neutron irradiation tests of the composing materials for an ultrasonic motor and the alternatives such as polyimide and liquid crystal polymer indicate that the motor with those materials is available for the ITER launcher. The remote maintenance scheme of the launcher, which corresponded one-to-one with the fabrication scenario, was also introduced. A "front-access scheme" and a "rear-access scheme" are considered, and their feasibilities are discussed.