ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
K. Takahashi, N. Kobayashi, J. Ohmori, S. Suzuki, A. Kasugai, K. Sakamoto
Fusion Science and Technology | Volume 52 | Number 2 | August 2007 | Pages 266-280
Technical Paper | Electron Cyclotron Wave Physics, Technology, and Applications - Part 1 | doi.org/10.13182/FST07-A1506
Articles are hosted by Taylor and Francis Online.
Progress on design of an International Thermonuclear Experimental Reactor (ITER) equatorial electron cyclotron launcher with analytical and research and development studies of the components is described. The modified design of the front shield module is proposed with electromagnetic and structure analysis. The analytical investigation of the modified steering mirror design shows that maximum temperature and stress intensity are 289°C and 336 MPa on the mirror surface (copper alloy) and the inner surface of the cooling tube (Type 316 stainless steel) in the mirror, respectively. Maximum stress intensity of the spiral tube to feed cooling water to the steering mirror is calculated to be 139 MPa. These values are less than the allowable level. High heat flux irradiation experiments of the mirror mock-up and fatigue tests of the spiral tube were carried out, and their results proved that the concept of the steering mirror structure was feasible. The results on neutron irradiation tests of the composing materials for an ultrasonic motor and the alternatives such as polyimide and liquid crystal polymer indicate that the motor with those materials is available for the ITER launcher. The remote maintenance scheme of the launcher, which corresponded one-to-one with the fabrication scenario, was also introduced. A "front-access scheme" and a "rear-access scheme" are considered, and their feasibilities are discussed.