ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
K. Takahashi, N. Kobayashi, J. Ohmori, S. Suzuki, A. Kasugai, K. Sakamoto
Fusion Science and Technology | Volume 52 | Number 2 | August 2007 | Pages 266-280
Technical Paper | Electron Cyclotron Wave Physics, Technology, and Applications - Part 1 | doi.org/10.13182/FST07-A1506
Articles are hosted by Taylor and Francis Online.
Progress on design of an International Thermonuclear Experimental Reactor (ITER) equatorial electron cyclotron launcher with analytical and research and development studies of the components is described. The modified design of the front shield module is proposed with electromagnetic and structure analysis. The analytical investigation of the modified steering mirror design shows that maximum temperature and stress intensity are 289°C and 336 MPa on the mirror surface (copper alloy) and the inner surface of the cooling tube (Type 316 stainless steel) in the mirror, respectively. Maximum stress intensity of the spiral tube to feed cooling water to the steering mirror is calculated to be 139 MPa. These values are less than the allowable level. High heat flux irradiation experiments of the mirror mock-up and fatigue tests of the spiral tube were carried out, and their results proved that the concept of the steering mirror structure was feasible. The results on neutron irradiation tests of the composing materials for an ultrasonic motor and the alternatives such as polyimide and liquid crystal polymer indicate that the motor with those materials is available for the ITER launcher. The remote maintenance scheme of the launcher, which corresponded one-to-one with the fabrication scenario, was also introduced. A "front-access scheme" and a "rear-access scheme" are considered, and their feasibilities are discussed.