ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
K. Takahashi, N. Kobayashi, J. Ohmori, S. Suzuki, A. Kasugai, K. Sakamoto
Fusion Science and Technology | Volume 52 | Number 2 | August 2007 | Pages 266-280
Technical Paper | Electron Cyclotron Wave Physics, Technology, and Applications - Part 1 | doi.org/10.13182/FST07-A1506
Articles are hosted by Taylor and Francis Online.
Progress on design of an International Thermonuclear Experimental Reactor (ITER) equatorial electron cyclotron launcher with analytical and research and development studies of the components is described. The modified design of the front shield module is proposed with electromagnetic and structure analysis. The analytical investigation of the modified steering mirror design shows that maximum temperature and stress intensity are 289°C and 336 MPa on the mirror surface (copper alloy) and the inner surface of the cooling tube (Type 316 stainless steel) in the mirror, respectively. Maximum stress intensity of the spiral tube to feed cooling water to the steering mirror is calculated to be 139 MPa. These values are less than the allowable level. High heat flux irradiation experiments of the mirror mock-up and fatigue tests of the spiral tube were carried out, and their results proved that the concept of the steering mirror structure was feasible. The results on neutron irradiation tests of the composing materials for an ultrasonic motor and the alternatives such as polyimide and liquid crystal polymer indicate that the motor with those materials is available for the ITER launcher. The remote maintenance scheme of the launcher, which corresponded one-to-one with the fabrication scenario, was also introduced. A "front-access scheme" and a "rear-access scheme" are considered, and their feasibilities are discussed.