ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
I. Danilov, R. Heidinger, A. Meier, B. Piosczyk, M. Schmid, P. Späh, W. Bongers, M. Graswinckel, B. Lamers, A. G. A. Verhoeven
Fusion Science and Technology | Volume 52 | Number 2 | August 2007 | Pages 250-255
Technical Paper | Electron Cyclotron Wave Physics, Technology, and Applications - Part 1 | doi.org/10.13182/FST07-A1504
Articles are hosted by Taylor and Francis Online.
The millimeter-wave system of the remote steering launcher at the upper port level is composed of beamlines that are rated for 2-MW continuous-wave operation at 170 GHz. In each beamline, a torus window is located between the entrance to the in-vessel square corrugated waveguide and the steerable mirrors in the launcher back end. In the reference design, the maximum steering angle of 12 deg imposes a 27-mm off-center beam shift to the window disk center, which in turn leads to asymmetrical heating of the window. This raises particular concerns of enhanced thermomechanical stresses in the window and in the metallic window cuffs. In order to qualify the optical, mechanical, and thermohydraulic design, high-power short-pulse and thermohydraulic tests were performed using a prototype chemical vapor deposition diamond torus window developed and manufactured at Forschungszentrum Karlsruhe. It was proven that arcing did not occur even under maximum millimeter-wave power levels available (up to 0.53 MW) and that the millimeter-wave beam profile was fully maintained. A test facility allowed thermohydraulic studies of the window cooling system with parameters characteristic for component cooling water loops at ITER (pw = 1.0 MPa, Tw = 40°C).