ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
F. Castejón, A. Cappa, M. Tereshchenko, S. S. Pavlov, A. Fernández
Fusion Science and Technology | Volume 52 | Number 2 | August 2007 | Pages 230-239
Technical Paper | Electron Cyclotron Wave Physics, Technology, and Applications - Part 1 | doi.org/10.13182/FST07-A1502
Articles are hosted by Taylor and Francis Online.
The relativistic effects on electron Bernstein wave (EBW) heating of plasmas confined in the TJ-II stellarator are presented in this work. The Ordinary-eXtraordinary-Bernstein mode conversion at the fundamental electron cyclotron harmonic (f = 28 GHz for the TJ-II central magnetic field) is chosen as the scenario for these estimates. This heating scheme presents high absorbed power for central densities above 1.2 × 1019 m-3 and has no upper density limit. Relativistic and nonrelativistic calculations have been performed using the TRUBA beam/ray-tracing code. For this purpose, the weakly relativistic dispersion relation valid for any values of the parallel and perpendicular refractive indexes, thus suitable for EBW, has been obtained. This dispersion relation has been introduced in TRUBA to estimate the ray trajectories and the power absorption to all orders of Larmor radius in the weakly relativistic regime. The result of our comparison is that the relativistic effects are not negligible and must be taken into account both on the ray trajectories and in the power absorption estimations. We also show that the relativistic absorption coefficient is lower than the nonrelativistic one, for the values of parallel refractive index that happen in TJ-II, and the power deposition profile is more centered.