ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
A. Mueck, Y. Camenen, S. Coda, L. Curchod, T. P. Goodman, H. P. Laqua, A. Pochelon, L. Porte, V. S. Udintsev, F. Volpe, TCV Team
Fusion Science and Technology | Volume 52 | Number 2 | August 2007 | Pages 221-229
Technical Paper | Electron Cyclotron Wave Physics, Technology, and Applications - Part 1 | doi.org/10.13182/FST07-A1501
Articles are hosted by Taylor and Francis Online.
Electron cyclotron resonance heating (ECRH) of high-density tokamak plasmas is limited because of reflections of the waves at so-called wave cutoffs. Electron Bernstein wave (EBW) heating (EBWH) via a double mode conversion process from ordinary (O)-mode, launched from the low field side, to extraordinary (X)-mode and finally to Bernstein (B)-mode offers the possibility of overcoming these density limits.In this paper, the O-X mode conversion dependence on the microwave injection angle is demonstrated experimentally. The dependence on the injection angle is studied in high-density plasmas in H-mode, in the presence of magnetohydrodynamic activity, edge-localized modes, and sawteeth. The results of localized heat deposition at an overdense location are presented, demonstrating EBWH for the first time via the O-X-B mode conversion process in a standard aspect-ratio tokamak. The results of global and local power deposition are compared with ray-tracing calculations. Moreover, a temperature increase due to EBWH is observed.Initial EBW emission measurements with a newly installed ECRH reception launcher are presented. The inverse double mode conversion process B-X-O is observed by measuring the emission for several frequencies at an optimum angle.