ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Hideo Kozima, Kaori Kaki, Masayuki Ohta
Fusion Science and Technology | Volume 33 | Number 1 | January 1998 | Pages 52-62
Technical Paper | doi.org/10.13182/FST98-A15
Articles are hosted by Taylor and Francis Online.
More than 25 typical experimental data sets of the cold fusion phenomenon have been analyzed phenomenologically by the TNCF (trapped neutron catalyzed fusion) model based on an assumption of the quasi-stable existence of the thermal neutrons in solids with special characteristics, giving a consistent explanation of the whole data set. The densities of the assumed thermal neutron in solids have been determined in the analyses from various experimental data and were in a range of 103 to 1012 cm-3. The success of the analyses verifies the validity of the assumption of the trapped thermal neutron. Physical bases of the model were speculated, facilitating the quasi-stable existence of the thermal neutron in the crystals, thereby satisfying definite conditions.