ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Diablo Canyon completes dry storage campaign, seeks ISFSI license renewal
Holtec International announced that it has completed the campaign to transfer Diablo Canyon’s spent nuclear to dry storage ahead of its planned schedule, paving the way for the continued operation of the central California nuclear power plant.
V. Shevchenko, G. Cunningham, A. Gurchenko, E. Gusakov, B. Lloyd, M. O'Brien, A. Saveliev, A. Surkov, F. Volpe, M. Walsh
Fusion Science and Technology | Volume 52 | Number 2 | August 2007 | Pages 202-215
Technical Paper | Electron Cyclotron Wave Physics, Technology, and Applications - Part 1 | doi.org/10.13182/FST07-A1499
Articles are hosted by Taylor and Francis Online.
Burning plasma spherical tokamaks (STs) rely on off-axis current drive (CD) and nonsolenoid start-up techniques. Electron Bernstein waves (EBWs) may provide efficient off-axis heating and CD in high-density ST plasmas. EBWs may also be used in the plasma start-up phase because EBW absorption and CD efficiency remain high even in relatively cold plasmas. EBW studies on the Mega Ampere Spherical Tokamak (MAST) can be subdivided into four separate subjects: thermal electron cyclotron emission observations from overdense plasmas, EBW modeling, proof-of-principle EBW heating experiments with the existing 60-GHz gyrotrons, and EBW assisted plasma start-up at 28 GHz. These studies are also aimed at determining the potential for a high-power EBW system for heating and CD in MAST. The optimum choice of frequency and launch configuration is a key issue for future applications in MAST. This paper describes diagnostics, modeling tools, and high-power radio frequency systems developed specifically for EBW research in MAST. The experimental methodology employed in proof-of-principle EBW heating experiments along with experimental results is discussed in detail. EBW heating via the ordinary-extraordinary-Bernstein (O-X-B) mode conversion has clearly been observed for the first time in an ST.