ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
M. Sato, A. Isayama
Fusion Science and Technology | Volume 52 | Number 2 | August 2007 | Pages 169-175
Technical Paper | Electron Cyclotron Wave Physics, Technology, and Applications - Part 1 | doi.org/10.13182/FST07-A1496
Articles are hosted by Taylor and Francis Online.
Extended Trubnikov emissivity is evaluated to oblique propagation to the magnetic field in the spherically symmetric relativistic Maxwellian case. Using the extended Trubnikov expression, electron cyclotron emission (ECE) spectra and electron temperature profiles are calculated in a reactor-grade tokamak. We investigate the possibility of electron temperature profile Te(r) measurement from second-harmonic extraordinary (X)-mode ECE by changing the propagation direction. The observation angles all are scanned in solid angle to find out when the relativistic effects of the third-harmonic ECE on second- harmonic ECE decrease are minimal. The measurable Te from second-harmonic X-mode becomes high by increasing the angle between the propagation sight line and the equatorial plane because of the avoidance of the overlap region between the second and third harmonics, but the spatial resolution becomes worse. The antenna is not necessarily located around the equatorial plane. The second X-mode and the fundamental ordinary (O)-mode for the Te(r) measurement from ECE are best in the cases of Te(0) 24 keV and 24 keV Te(0) 50 keV, respectively. When the electron density, the magnetic field, and/or the inverse aspect ratio increase, the measurable Te decreases.