ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Daniela Farina
Fusion Science and Technology | Volume 52 | Number 2 | August 2007 | Pages 154-160
Technical Paper | Electron Cyclotron Wave Physics, Technology, and Applications - Part 1 | doi.org/10.13182/FST07-A1494
Articles are hosted by Taylor and Francis Online.
The theoretical framework of quasi-optical propagation power absorption and driven current of a Gaussian beam of electron cyclotron (EC) waves in a general tokamak equilibrium implemented in the code GRAY is presented. Within the framework of the complex eikonal approach, the propagation of a general astigmatic Gaussian beam is described in terms of a set of coupled rays, allowing for diffraction effects. The computation of the EC wave absorption and current drive is performed for each ray of the beam, by means of a relativistic dispersion relation for EC waves and of a neoclassical response function for the current. The code has been designed and tested for calculations of propagation, power absorption, and current drive of realistic EC beams in ITER.