ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Hartmut Zohm
Fusion Science and Technology | Volume 52 | Number 2 | August 2007 | Pages 134-144
Technical Paper | Electron Cyclotron Wave Physics, Technology, and Applications - Part 1 | doi.org/10.13182/FST07-A1492
Articles are hosted by Taylor and Francis Online.
A review of recent experimental results in electron cyclotron (EC) resonance heating and EC current drive (CD) (ECCD) is given. Special emphasis is put on the recent developments of new schemes in which EC waves can heat and drive current in magnetically confined fusion plasmas. These comprise scenarios to overcome the density cutoff experienced in application of the classical first-harmonic ordinary mode (O1) and second-harmonic extraordinary mode (X2) schemes as well as to increase the CD efficiency of EC waves while maintaining their good localization. In particular, we discuss recent experimental progress in tokamaks, stellarators, and spherical tori in the areas of the second-harmonic ordinary mode (O2), third-harmonic extraordinary mode (X3), and electron Bernstein wave schemes [mostly Ordinary-eXtraordinary-Bernstein (O-X-B) scheme] as well as experiments in which the combination of ECCD with lower hybrid CD leads to a synergetic increase of the ECCD efficiency. A particular application of ECCD that has recently received much attention and is therefore reviewed in this paper is the suppression of neoclassical tearing modes (NTMs) by ECCD. We show that the theoretically predicted requirements for ECCD in terms of deposition (maximizing the ECCD driven current density) and injection in phase with the O-point of the magnetic island associated with the NTM (which is needed when the island width falls below the deposition width) have been verified experimentally. Also, many of the elements needed for constructing a reliable, feedback-controlled NTM suppression system for ITER based on ECCD have now been demonstrated experimentally, and the next step, which is their integration into a reliable scheme, is well within reach.