ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Hartmut Zohm
Fusion Science and Technology | Volume 52 | Number 2 | August 2007 | Pages 134-144
Technical Paper | Electron Cyclotron Wave Physics, Technology, and Applications - Part 1 | doi.org/10.13182/FST07-A1492
Articles are hosted by Taylor and Francis Online.
A review of recent experimental results in electron cyclotron (EC) resonance heating and EC current drive (CD) (ECCD) is given. Special emphasis is put on the recent developments of new schemes in which EC waves can heat and drive current in magnetically confined fusion plasmas. These comprise scenarios to overcome the density cutoff experienced in application of the classical first-harmonic ordinary mode (O1) and second-harmonic extraordinary mode (X2) schemes as well as to increase the CD efficiency of EC waves while maintaining their good localization. In particular, we discuss recent experimental progress in tokamaks, stellarators, and spherical tori in the areas of the second-harmonic ordinary mode (O2), third-harmonic extraordinary mode (X3), and electron Bernstein wave schemes [mostly Ordinary-eXtraordinary-Bernstein (O-X-B) scheme] as well as experiments in which the combination of ECCD with lower hybrid CD leads to a synergetic increase of the ECCD efficiency. A particular application of ECCD that has recently received much attention and is therefore reviewed in this paper is the suppression of neoclassical tearing modes (NTMs) by ECCD. We show that the theoretically predicted requirements for ECCD in terms of deposition (maximizing the ECCD driven current density) and injection in phase with the O-point of the magnetic island associated with the NTM (which is needed when the island width falls below the deposition width) have been verified experimentally. Also, many of the elements needed for constructing a reliable, feedback-controlled NTM suppression system for ITER based on ECCD have now been demonstrated experimentally, and the next step, which is their integration into a reliable scheme, is well within reach.