ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Gary Taylor
Fusion Science and Technology | Volume 52 | Number 2 | August 2007 | Pages 119-133
Technical Paper | Electron Cyclotron Wave Physics, Technology, and Applications - Part 1 | doi.org/10.13182/FST07-A1491
Articles are hosted by Taylor and Francis Online.
Electron cyclotron emission (ECE) has been an important diagnostic for measuring the temporal evolution of the electron temperature profile in magnetically confined plasma devices for more than 25 years. Recent advances in ECE measurements, such as two-dimensional ECE imaging and ECE intensity correlation techniques, have provided detailed information on sawtooth reconnection, neoclassical tearing mode behavior, electron heat transport, fast electron dynamics, and fast particle-driven Alfvén eigenmodes. ECE spectral analysis is benefiting from improved ECE modeling and significant increases in computational power that allow fast, real-time, temperature measurements. Mode-converted electron Bernstein wave emission (EBE) diagnostics are being developed to study overdense (pe >> ce) plasmas, a regime where conventional ECE diagnostics cannot be applied and one commonly encountered in high- devices, such as the spherical torus and reversed-field pinch. While ECE diagnostic techniques are now well established on many existing magnetically confined plasmas, significant challenges lie ahead for applying ECE techniques to reactor-grade plasmas such as ITER, where Te(0) is expected to reach 20 to 40 keV. This paper reviews the recent advances in ECE, electron cyclotron absorption, and EBE diagnostics and discusses the challenges for ECE measurements on ITER.