ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
Gary Taylor
Fusion Science and Technology | Volume 52 | Number 2 | August 2007 | Pages 119-133
Technical Paper | Electron Cyclotron Wave Physics, Technology, and Applications - Part 1 | doi.org/10.13182/FST07-A1491
Articles are hosted by Taylor and Francis Online.
Electron cyclotron emission (ECE) has been an important diagnostic for measuring the temporal evolution of the electron temperature profile in magnetically confined plasma devices for more than 25 years. Recent advances in ECE measurements, such as two-dimensional ECE imaging and ECE intensity correlation techniques, have provided detailed information on sawtooth reconnection, neoclassical tearing mode behavior, electron heat transport, fast electron dynamics, and fast particle-driven Alfvén eigenmodes. ECE spectral analysis is benefiting from improved ECE modeling and significant increases in computational power that allow fast, real-time, temperature measurements. Mode-converted electron Bernstein wave emission (EBE) diagnostics are being developed to study overdense (pe >> ce) plasmas, a regime where conventional ECE diagnostics cannot be applied and one commonly encountered in high- devices, such as the spherical torus and reversed-field pinch. While ECE diagnostic techniques are now well established on many existing magnetically confined plasmas, significant challenges lie ahead for applying ECE techniques to reactor-grade plasmas such as ITER, where Te(0) is expected to reach 20 to 40 keV. This paper reviews the recent advances in ECE, electron cyclotron absorption, and EBE diagnostics and discusses the challenges for ECE measurements on ITER.