ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
W. M. Stacey
Fusion Science and Technology | Volume 52 | Number 1 | July 2007 | Pages 29-67
Technical Paper | doi.org/10.13182/FST07-A1485
Articles are hosted by Taylor and Francis Online.
The strong temperature dependence, over certain temperature ranges, of the radiation cooling rate of low-Z impurities, of the atomic physics cooling and particle source rates associated with recycling and fueling neutrals, of the ion-electron recombination particle loss rate, of the turbulent transport loss rate, and of the fusion alpha-particle heating rate have all been identified as "drivers" of thermal instabilities in the coupled plasma particle, momentum, and energy balances. This paper surveys the experimental observations of a number of abrupt transition phenomena in plasma operating conditions - i.e., density-limit disruptions, multifaceted asymmetric radiations from the edge (MARFEs), divertor MARFEs, detachment, in-out divertor heat flux asymmetries, H-L and L-H transitions, confinement, and pedestal deterioration - or anticipated in future reactors - i.e., power excursions - their theoretical interpretations in terms of thermal instabilities driven by the temperature dependence of various radiative and atomic physics cooling mechanisms, and a comparison of theoretical prediction with experimental observations. Also surveyed are theoretical predictions of thermal instabilities in the power balance driven by the strong positive temperature dependence of the fusion heating rate.