ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Javier E. Vitela
Fusion Science and Technology | Volume 52 | Number 1 | July 2007 | Pages 1-28
Technical Paper | doi.org/10.13182/FST07-A1484
Articles are hosted by Taylor and Francis Online.
We report on the burn control studies of a D-T-fueled tokamak reactor using a two-temperature, zero-dimensional, volume-averaged model, assuming that electrons and ions have the same radial profile with different central temperatures. Balance equations for the particle and energy densities are used assuming that energy and particle transport losses are independent of each other and can be estimated online; thermalization time delays of the energetic alpha particles produced by fusion are taken into account in the dynamical equations. The burn stabilization is achieved with radial basis neural networks (RBNNs) that concurrently modulate a D-T refueling rate, a neutral 4He beam, and auxiliary heating powers to the electrons and the ions, all constrained to maximum allowable levels. The resulting network provides feedback stabilization in a wide range of energy confinement times for plasma density and temperature excursions significantly far from their nominal values. Transient examples using different ELMy scaling laws show that the RBNN controller is stable with respect to any particular scaling law that the tokamak may actually follow for the energy and particle transport losses and is also robust with respect to noise in the measurement of the confinement times. Furthermore, it satisfactorily responds to sudden changes in fast-alpha-particle losses due to increments in magnetohydrodynamic events.