ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Javier E. Vitela
Fusion Science and Technology | Volume 52 | Number 1 | July 2007 | Pages 1-28
Technical Paper | doi.org/10.13182/FST07-A1484
Articles are hosted by Taylor and Francis Online.
We report on the burn control studies of a D-T-fueled tokamak reactor using a two-temperature, zero-dimensional, volume-averaged model, assuming that electrons and ions have the same radial profile with different central temperatures. Balance equations for the particle and energy densities are used assuming that energy and particle transport losses are independent of each other and can be estimated online; thermalization time delays of the energetic alpha particles produced by fusion are taken into account in the dynamical equations. The burn stabilization is achieved with radial basis neural networks (RBNNs) that concurrently modulate a D-T refueling rate, a neutral 4He beam, and auxiliary heating powers to the electrons and the ions, all constrained to maximum allowable levels. The resulting network provides feedback stabilization in a wide range of energy confinement times for plasma density and temperature excursions significantly far from their nominal values. Transient examples using different ELMy scaling laws show that the RBNN controller is stable with respect to any particular scaling law that the tokamak may actually follow for the energy and particle transport losses and is also robust with respect to noise in the measurement of the confinement times. Furthermore, it satisfactorily responds to sudden changes in fast-alpha-particle losses due to increments in magnetohydrodynamic events.