ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Javier E. Vitela
Fusion Science and Technology | Volume 52 | Number 1 | July 2007 | Pages 1-28
Technical Paper | doi.org/10.13182/FST07-A1484
Articles are hosted by Taylor and Francis Online.
We report on the burn control studies of a D-T-fueled tokamak reactor using a two-temperature, zero-dimensional, volume-averaged model, assuming that electrons and ions have the same radial profile with different central temperatures. Balance equations for the particle and energy densities are used assuming that energy and particle transport losses are independent of each other and can be estimated online; thermalization time delays of the energetic alpha particles produced by fusion are taken into account in the dynamical equations. The burn stabilization is achieved with radial basis neural networks (RBNNs) that concurrently modulate a D-T refueling rate, a neutral 4He beam, and auxiliary heating powers to the electrons and the ions, all constrained to maximum allowable levels. The resulting network provides feedback stabilization in a wide range of energy confinement times for plasma density and temperature excursions significantly far from their nominal values. Transient examples using different ELMy scaling laws show that the RBNN controller is stable with respect to any particular scaling law that the tokamak may actually follow for the energy and particle transport losses and is also robust with respect to noise in the measurement of the confinement times. Furthermore, it satisfactorily responds to sudden changes in fast-alpha-particle losses due to increments in magnetohydrodynamic events.