ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
E. Valmianski, R. W. Petzoldt
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 800-803
Technical Paper | doi.org/10.13182/FST07-A1483
Articles are hosted by Taylor and Francis Online.
Mechanical response of DT targets to acceleration was analyzed using the finite element method for Inertial Fusion Energy (IFE) targets and for smaller targets that have been proposed for an upcoming Fusion Test Facility (FTF). Analysis was done in the temperature and acceleration regions of interest for Inertial Fusion Energy (14-19 K and 1,000-10,000 m/s2). In these ranges, von Mises stress distribution, axial deflection, and the minimum value of support membrane attachment angle as well as free vibrations of the target after it leaves the injector were calculated. The role of the outer polymer coating, the support membrane attachment angle and the DT void pressure in the mechanical response of a DT target to acceleration was considered. Analysis shows, assuming that DT mechanical properties are equivalent to D2, that IFE and FTF targets should withstand acceleration of up to 10,000 m/s2 with negligible deformation.