ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Robert D. Day, Paul M. Brooks, Randall L. Edwards, Felix P. Garcia, Gary P. Grim, Arthur Nobile, Jr., Derek W. Schmidt, Ronald C. Snow, Adelaida C. Valdez
Fusion Science and Technology | Volume 51 | Number 4 | May 2007 | Pages 776-781
Technical Paper | doi.org/10.13182/FST07-A1478
Articles are hosted by Taylor and Francis Online.
Neutron imaging diagnostics are needed for understanding the principles of fusion ignition. Current experiments on the University of Rochester OMEGA laser facility and future experiments at the NIF require a new level of complexity in neutron diagnostics that has not yet been achieved. Previous shots have fielded a one dimensional pinhole array to gather an image of a sphere's neutron emission during the implosion. This one dimensional pinhole array that consisted of two pinholes on a plane was a challenging manufacturing task and was a substantial accomplishment for its time. Future neutron imaging diagnostics will require a two dimensional pinhole array to gather a more comprehensive set of data. This two dimensional pinhole array, consisting of 3 pinholes one three planes to form a 3x3 array of pinholes, added a new level of complexity to the manufacturability. A method for fabricating this pinhole array was developed and the finished instrument was fielded in July and October 2006. This paper describes the fabrication process to producing this pinhole array and shows some of the early data taken with it at the Omega facility.